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could be interested in this? are these people? - introductions e will this all be done?
Uwe R. Zimmer & Charles Martin
anybody who ...
Abigail (Abi) Thomas, Aditya Chilukuri,
Brent Schuetze, Calum Snowdon, Chinmay Garg, Felix Friedlander
Johannes (Johnny) Schmalz, Nicholas Philip Miehlbradt, .
Tommy Liu, William (Will) Cashman & Yaya Lu wr Laboratories:

= Lectures:
* 2x1.5hours lectures per week ... all the nice stuff

. Tuesday 12:00 & Friday 11:00 (all live on-line)
... wants to work with real-world scale computer systems

... would like to learn how to time slots: on our web-site

analyse and design operational and robust systems

... would like to understand more about the existing trade-off between
theory, the real-world, traditions, and pragmatism in computer science

... would like to understand why concurrent systems are
an essential basis for most contemporary devices and systems
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Mt”g F T * 3hours per week ... all the rough and action stuff
- 7 g

-enrolment: https://cs.anu.edu.au/streams/ (open since last Monday, more slots today)

= Resources:
* Introduced in the lectures and collected on the course page:
https://cs.anu.edu.au/courses/comp2310/ ... as well as schedules, slides,
sources, links to forums, etc. pp. ... keep an eye on this page!

w Assessment (for discussion):
¢ Exam at the end of the course (50%)
plus one hurdle lab in week 4 (5%)
plus two assignments (15% + 15%)
plus one mid-semester exam (15%)
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Text book for the course

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming
2006, second edition, Prentice-Hall, ISBN 0-13-711821-X

1 Many algorithms and concepts for the course are in there

w References for specific aspects of the course are provided
during the course and are found on our web-site.
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* Coupled dynamical systems 3 =, munication &
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* Abstractions
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* Failure possibilities

* Dekker’s algorithm
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« Minimal hardware support
2.3. by semaphores [0.5]
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4. Non-determinism [2]
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« Cond. variables 6. Scheduling [2]
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* Semaphores
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3. Condition
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« Assumptions for
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8. Distributed systems [4]
9. Architectures [1]

* Basic methods
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7. Safety and liveness [2]
8. Distributed systems [4]
9. Architectures [1]

4.1. Correctness under non-
determinism [1]
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* Non-determinism
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distributed systems
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a contradiction?
4.2. Select statements [1]

* Forms of non-deterministic
message reception
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* Detection

* Avoidance
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Idempotent & atomic
operations
Definitions
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* OSI model
* Network implementations
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 Termination
8.4. Distributed
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References for this chapter ges explicitly supporting concurrency: e.g. Ada

[Ada 2012 Language Reference Manual]

see course pages or http://www.ada-auth.org/standards/ada12.html Adais an (ISO/IEC 8652:201(E)) ,genera] purpose’
52:

[Chapel 1.13 Language Specification Version 0.981] language with focus on “program reliability and maintenance,
see course pages or o e o 5
http://chapel.cray.com/docs/latest/_downloads/chapelLanguageSpec.pdf programming as a human activity, and efﬁCIenCy N
released on 7. April 2016 It provides for:

* Strong typing, contracts, separate compilation (specification and implementation),

abstract data types, generics, object-orientation.

Concurrency, message passing, synchronization, monitors, rpcs, timeouts, scheduling,
priority ceiling locks, hardware mappings, fully typed network communication.
Strong run-time environments (incl. stand-alone execution).

Language refresher / introduction course

..as well as for:

. _ . . . . Additional real-time features, distributed programming, system-level programming,
Uwe R. Zimmer - The Australian National University numeric, informations systems, safety and security issues.
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Ada Data structure example Data structure example

A crash course Queues Queues

.. refreshing for some, x’th-language introduction for others: Forms of implementation: Forms of implementation:

Specification and implementation (body) parts, basic types

Exceptions

Information hiding in specifications (‘private’)

Contracts

Generic programming (polymorphism) . .

Tasklvg . ) T T

Monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’) J“Jﬂ = _'f"—ﬁ'.ﬁ '.- l;i Me, Almost
1

. ) ‘ impossible
Abstract types and dispatching for [r)eal-nme

Not mentioned here: general object orientation, dynamic memory management, ‘ systems.

foreign language interfaces, marshalling, basics of imperative programming, ... Potentially suited for real-time sys- ‘
tems if distributed storage is required
and memory can be pre-allocated
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Ada A simple queue A simple queue
Basics

Queue_Pack_Simple is Queue_Pack_Simple is
QueueSize : Positive := 10; QueueSize : Positive := 10;
HS H H H type Element is Positive 1_000..40_000; type Element is Positive 1_000..40_000;
* Specification and implementation (body) parts type Marker is mod QueueSize; type Marker is mod QueueSize;
o Constants type List is array (Marker) of Element; type List is array (Marker) of Element; | )
type Queue_Type is record type Queue_Type is record SPQC'f'F;"g':Sdef‘":;g“;‘g:sai to
Top, Free : Marker := Marker ; Top, Free : Marker := Marker ; ‘ provided types a P >
* Some type attributes Is_Empty : Boolean := True; Is_Empty : Boolean := True; Syntactically enclosed
Elements : List; Elements : List; L in a package block.
o Parameter specification end record; end record; —
procedure Enqueue (Item: Element; Queue: Queue_Type) ; procedure Enqueue (Item: Element; Queue: Queue_Type);
procedure Dequeue (Item: Element; Queue: Queue_Type); procedure Dequeue (Item: Element; Queue: Queue_Type);

... introducing:

¢ Some basic types (integer specifics)

function Is_Empty (Queue : Queue_Type) Boolean; function Is_Empty (Queue : Queue_Type) Boolean;
function Is_Full (Queue : Queue_Type) Boolean; function Is_Full (Queue : Queue_Type) Boolean;

end Queue_Pack_Simple; end Queue_Pack_Simple;
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A simple queue

m— — |}
Variables should be initialized.

Constants must be initialized. ‘
=

Queue_Pack_Simple is
QueueSize : Positive := 10;
type Element  is Positive 1_000. .40_000;
type Marker is QueueSize; ——
type List is array (Marker) of Element; ‘ Assignments are denoted
type Queue_Type is record by the “:=" symbol.
Top, Free : Marker : 8 ‘ ... leaving the “=" symbol
Is_Empty : Boolean for comparisons.
Elements : List; L —
end record;
procedure Enqueue (Item: Element; Queue: Queue_Type);
procedure Dequeue (Item: Element; Queue: Queue_Type);
function Is_Empty (Queue : Queue_Type) Boolean;
function Is_Full (Queue : Queue_Type) Boolean;

end Queue_Pack_Simple;

©2020 Uwe R. Zimmer, The Ausialian National University
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A simple queue

Queue_Pack_Simple is
QueueSize : Positive := 10;
type Element is Positive
type Marker is QueueSize;
type List is array (Marker) of Element; |

1_000..40_000;

All types come with a long
list of built-in attributes. ‘
Let the compiler fill in what you ‘

‘ already (implicitly) specified!

type Queue_Type is record
Top, Free : Marker ‘
Is_Empty : Boolean :
Elements : List;
end record;

procedure Enqueue (Item: Element; Queue: Queue_Type);
procedure Dequeue (Item: Element; Queue: Queue_Type);
function Is_Empty (Queue : Queue_Type) Boolean;
function Is_Full (Queue : Queue_Type) Boolean;

end Queue_Pack_Simple;

©2020 Uwe R. Zimmer, The Ausiralian National University
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A simple queue

Queue_Pack_Simple is
QueueSize : Positive := 10;
type Element is Positive
type Marker is QueueSize;
type List is array (Marker) of Element; Default initializations can
‘ be selected to be:

1.000..40_000;

type Queue_Type is record
Top, Free : Marker := Marker
Is_Empty : Boolean := True; ‘
Elements : List;

end record; L

as is (random memory content),
initialized to invalids, e.g. 999
or valid, predicable values, e.g.1_000 |

procedure Enqueue (Item: Element; Queue: Queue_Type) ;
procedure Dequeue (Item: Element; Queue: Queue_Type) ;

function Is_Empty (Queue : Queue_Type) Boolean;
function Is_Full (Queue : Queue_Type) Boolean;
end Queue_Pack_Simple;

©2020 Uwe R. Zimmer, The Austalian National University page 3007756 efrsher / introduction course” up 1o page 160)
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A simple queue

Queue_Pack_Simple is
QueueSize : Positive := 10;
type Element is Positive
type Marker is QueueSize;
type List is array (Marker) of Element;

1_000. .40_000;

type Queue_Type is record
Top, Free : Marker := Marker
Is_Empty : Boolean := True;
Elements : List;

end record;

procedure Enqueue (Item: Element; Queue: Queue_Type) ;
procedure Dequeue (Item: Element; Queue: Queue_Type) ;

function Is_Empty (Queue : Queue_Type) Boolean;

i ﬁ’arameters can be passed ‘
function Is_Full (Queue : Queue_Type) Boolean;

as ‘in’ (default),
end Queue_Pack_Simple; ‘
or‘in ou

©2020 Uwe . Zimmer, The Australian National University page 33 of 758 (Language r introduction cours
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A simple queue

Queue_Pack_Simple is
QueueSize : Positive := 10;
type Element  is Positive 1_000. .40_000;
type Marker is QueueSize; T
type List is array (Marker) of Element;

Numerical types ‘

type Queue_Type is record ‘ can be specified by:
Top, Free : Marker := Marker
Is_Empty : Boolean := True;
Elements : List;

end record; L

range, modulo, ‘
‘ number of digits (i floating point)
or delta increment (= fixed point). ‘

procedure Enqueue (Item: Element; Queue: Queue_Type);
procedure Dequeue (Item: Element; Queue: Queue_Type);

function Is_Empty (Queue : Queue_Type) Boolean; |

function Is_Full (Queue : Queue_Type) Boolean; Always be as specific as

the language allows.
end Queue_Pack_Simple; ‘ guag

1
|

... and don't repeat yourself!
peat y

s -
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A simple queue

Queue_Pack_Simple is
QueueSize : Positive := 10;
type Element is Positive
type Marker is QueueSize;
type List is array (Marker) of Element;

1_000..40_000;

All specifications are used in
type Queue_Type is record ‘
Top, Free : Marker
Is_Empty : Boolean : G ‘ Compile time checks (mandatory) ‘

Elements : List; Run-time checks (suppressible).
end record;

Code optimizations (optional),

procedure Enqueue (Item: Element; Queue: Queue_Type);
procedure Dequeue (Item: Element; Queue: Queue_Type);

function Is_Empty (Queue : Queue_Type) Boolean;
function Is_Full (Queue : Queue_Type) Boolean;
end Queue_Pack_Simple;
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A simple queue

Queue_Pack_Simple is
QueueSize : Positive := 10;

type Element Positive
type Marker QueueSize;
type List array (Marker) of Element;

1_000..40_000;

type Queue_Type is record
Top, Free : Marker
Is_Empty : Boolean
Elements : List;

end record;

procedure Enqueue (Item: Element; Queue: Queue_Type);

procedure Dequeue (Item: Element; Queue: Queue_Type);

function Is_Empty (Queue : Queue_Type) Boolean;

function Is_Full (Queue : Queue_Type) Boolean;
end Queue_Pack_Simple;

‘ _
. anything on this slide

2020 Unne R. Zimme, The Ausialian page 35 of 758 (“Language refresher / introduction course” up to page 160)

still not perfectly clear?J

Language refresher / introduction course

A simple queue
Queue_Pack_Simple is
procedure Enqueue (Item: Element; Queue: Queue_Type) is
begin
Queue.Elements (Queue.Free) := Item;
Queue.Free Queue.Free
Queue.Is_Empty := False;
end Enqueue;
procedure Dequeue (Item: Element; Queue:
begin
Item := Queue.Elements (Queue.Top);
Queue.Top Queue.Top B
Queue.Is_Empty := Queue.Top = Queue.Free;
end Dequeue;

Queue_Type) is

function Is_Empty (Queue : Queue_Type) return Boolean is
Queue.Is_Empty ;

function Is_Full (Queue : Queue_Type) return Boolean is
not Queue.Is_Empty and then Queue.Top = Queue.Free ;

Pack_Simple;

The Austalian National page 36 07 756 (.
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A simple queue
Queue_Pack_Simple is
procedure Enqueue (Item: Element; Queue: Queue_Type) is
begin
Queue.Elements (Queue.Free) := Item;
Queue. Free := Queue.Free
Queue.Is_Empty := False;
end Enqueue;
procedure Dequeue (Item: Element; Queue:
begin [ . |
Item .Elements (Queue.Top); Implementations are ‘
Queue.Top Queue.Top H ‘ defined in a separate file.
Queue.Is_Empty Queue.Top = Queue.Free;
end Dequeue;

Queue_Type) is

Syntactically enclosed in ‘

‘ a package body block.

function Is_Empty (Queue : Queue_Type) return Boolean is e
Queue.Is_Empty ;

function Is_Full (Queue : Queue_Type) return Boolean is
not Queue.Is_Empty and then Queue.Top = Queue.Free ;
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A simple queue
Queue_Pack_Simple is

procedure Enqueue (Item: Element; Queue: Queue_Type) is
begin

Queue.Elements (Queue.Free) Item;

Queue.Free Queue.Free

Queue.Is_Empty := False;
end Enqueue;
procedure Dequeue (Item:

begin
Item := Queue.Elements (Queue.Top); I
Modulo type, hence no

Queue.Top Queue.Top H i 5 ired
Queue.Is_Empty := Queue.Top = Queue.Free; ‘ index checks required.

end Dequeue; “e——

Element; Queue: Queue_Type) is

function Is_Empty (Queue : Queue_Type) return Boolean is
Queue.Is_Empty ;
function TIs_Full (Queue : Queue_Type) return Boolean is
not Queue.Is_Empty and then Queue.Top = Queue.Free ;
end Queue_Pack_Simple;
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A simple queue
Queue_Pack_Simple is

procedure Enqueue (Item: Element; Queue: Queue_Type) is
begin

Queue.Elements (Queue.Free) tem;

Queue.Free Queue.Free

Queue.Is_Empty := False;
end Enqueue;

procedure Dequeue (Item: Element; Queue: Queue_Type) is
begin

Item := Queue.Elements (Queue.Top);

Queue.Top Queue.Top H

Queue.Is_Empty := Queue.Top = Queue.Free;

end Dequeue;

function Is_Empty (Queue : Queue_Type) return Boolean is
Queue.Is_Empty ; I EE———
function Is_Full (Queue : Queue_Type) return Boolean is ... anything on this slide ‘
not Queue.Is_Empty and then Queue.Top = Queue.Free ; still not perfectly clear?J

end Queue_Pack_Simple; —

©2020 Uwe R. Zimmer, The Australian National University page 1 of 758 (“Language refresher / itroduction course” up to page 160)
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A simple queue
Queue_Pack_Simple is

procedure Enqueue (Item: Element; Queue: Queue_Type) is
begin

Queue.Elements (Queue.Free) Item;

Queue.Free Queue.Free

Queue.Is_Empty := False;
end Enqueue;

procedure Dequeue (Item: Element; Queue: Queue_Type) is
begin
Item := Queue.Elements (Queue.Top);
Queue. Top := Queue.Top ; ——
Queue.Is_Empty := Queue.Top = Queue.Free; Boolean expressions J
end Dequeue; S
function Is_Empty (Queue : Queue_Type) return Boolean is
Queue.Is_Empty ;
function Is_Full (Queue : Queue_Type) return Boolean is
not Queue.Is_Empty and then Queue.Top = Queue.Free ;
end Queue_Pack_Simple;
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A simple queue test

Queue_Pack_Simple; Queue_Pack_Simple;

procedure Queue_Test_Simple is
Queue : Queue_Type;
Item : Element;

begin
Enqueue (2000, Queue);
Dequeue (Item, Queue);
Dequeue (Item, Queue);

end Queue_Test_Simple;
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A simple queue
Queue_Pack_Simple is

procedure Enqueue (Item: Element; Queue: Queue_Type) is
begin

Queue.Elements (Queue.Free) := Item;

Queue.Free Queue.Free

Queue.Is_Empty := False;
end Enqueue;

procedure Dequeue (Item: Element; Queue: Queue_Type) is

begin r
Item := Queue.Elements (Queue.Top);
Queue.Top Queue. Top ; ‘
Queue.Is_Empty := Queue.Top = Queue.Free;

end Dequeue;

Side-effect free,
single expression functions
can be expressed with-
out begin-end blocks.

function Is_Empty (Queue : Queue_Type) return Boolean is
Queue.Is_Empty ;
function Is_Full (Queue : Queue_Type) return Boolean is
not Queue.Is_Empty and then Queue.Top = Queue.Free ;
end Queue_Pack_Simple;
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A simple queue test

—
Importing items from other packages
is done with with-clauses.

Queue_Pack_Simple; Queue_Pack_Simple; ‘

procedure Queue_Test_Simple is use-clauses allow to use names with

Queue : Queue_Type;
Item : Element; I —

begin
Enqueue (2000, Queue);
Dequeue (Item, Queue);
Dequeue (Item, Queue);

end Queue_Test_Simple;
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‘ qualifying them with the package name.J

=
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A simple queue test

Queue_Pack_Simple; Queue_Pack_Simple; ‘
A top level procedure is read as the

code which needs to be executed.J

procedure Queue_Test_Simple is

Queue : Queue_Type;
Item : Element;

begin
Enqueue (2000, Queue);
Dequeue (Item, Queue);
Dequeue (Item, Queue);
end Queue_Test_Simple;
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Language refresher / introduction course

A simple queue test

Queue_Pack_Simple; Queue_Pack_Simple;

procedure Queue_Test_Simple is S —

| |
Variables are declared Algol style:
“Ttem is of type Element”.

Queue : Queue_Type;
Item : Element;

begin
Enqueue (2000, Queue);
Dequeue (Item, Queue);
Dequeue (Item, Queue);

end Queue_Test_Simple;

The Australian National iniroduction course” up 1o

=
< Language refresher / introduction course

A simple queue test

Queue_Pack_Simple; Queue_Pack_Simple;

procedure Queue_Test_Simple is _ I ——

Will produce a result according
to the chosen initialization:

Queue : Queue_Type;
Item : Element;
Raises an “invalid data” exception

begin ] e
if initialized to invalids.

Enqueue (2000, Queue);

Dequeue (Item, Queue);

Dequeue (Item, Queue);
end Queue_Test_Simple;

. hmm, ok ... so this was rubbish ...

I —
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Language refresher / introduction course

A simple queue test

Queue_Pack_Simple; Queue_Pack_Simple;

procedure Queue_Test_Simple is

Queue : Queue_Type;
Item : Element;

begin
Enqueue (2000, Queue);
Dequeue (Item, Queue);
Dequeue (Item, Queue);
end Queue_Test_Simple;

| _ S
... anything on this slide ‘
still not perfectly clear?
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A queue with proper exceptions

package Queue_Pack_Exceptions is
QueueSize : constant Positive := 10; .
Enumeration types are first-
3 class types and can be used
e.g. as array indices.

type Element is
type Marker is mod QueueSize;

type List is array (Marker) of Element; |

The representation values can be ‘
controlled and do not need to

be continuous (e.g. for purposes ‘
like interfacing with hardware).

type Queue_Type is record ‘
Top, Free : Marker := Marker’First;
Is_Empty : Boolean True; ‘
Elements : List;

end record;

procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is

(not Queue.Is_Empty and then Queue.Top = Queue.Free);
Queue_overflow, Queue_underflow : H

end Queue_Pack_Exceptions;

Language refresher / introduction course

Ada
Exceptions

... introducing:

¢ Exception handling
¢ Enumeration types

e Type attributed operators
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A queue with proper exceptions

package Queue_Pack_Exceptions is
QueueSize : constant Positive := 10;
type Element i H
type Marker mod QueueSize;
type List array (Marker) of Element; —_— -
Nothing else changes“
in the specificalior\s.J

type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;

end record;

procedure Enqueve (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);

Queue_overflow, Queue_underflow : B
end Queue_Pack_Exceptions; Exceptions need to be declare:

A queue

package Queue_Pack_Exceptions is
QueueSize : constant Positive := 10;
type Element is
type Marker is mod QueueSize;
type List is array (Marker) of Element;

type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;
end record;
procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

with proper exceptions

function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);

function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);
Queue_overflow, Queue_underflow : ;

end Queue_Pack_Exceptions;

A queue

package Queue_Pack_Exceptions is
QueueSize : constant Positive := 10;
type Element is
type Marker
type List

is mod QueueSize;
is array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean True;
Elements : List;
end record;

procedure Enqueue (Item: Element; Queue: in out Queue_Type);

procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

with proper exceptions

function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);

function TIs_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free); [
Queue_overflow, Queue_underflow :

end Queue_Pack_Exceptions;

... anything on this slide ‘
; still not perfectly clear?J

A queue with proper exceptions

package body Queue_Pack_Exceptions is
procedure Enqueue (Item : Element; Queue : in out Queue_Type) is
begin
if Is_Full (Queue) then
Queue_overflow;
end if;
Queue.Elements (Queue.Free) := Item;
Queue.Free := Marker’Succ (Queue.Free);
Queue.Is_Empty := False;
end Enqueue;

procedure Dequeue (Item : out Element; Queue : in out Queue_Type) is
begin
if Is_Empty (Queue) then
Queue_underflow;
end if;
Ttem Queue.Elements (Queue.Top);
Queue.Top Marker’Succ (Queue.Top);
Queue.Is_Empty Queue.Top = Queue.Free;
end Dequeue;
end Queue_Pack_Exceptions;
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A queue with proper exceptions

package body Queue_Pack_Exceptions is
procedure Enqueue (Item : Element; Queue : in out Queue_Type) is
begin
if Is_Full (Queue) then R
Queue_overflow; [ Raised exceptions break the control

end if; flow and “propagate” to the closest
: “exception handler” in the call-chain. |

Queue.Elements (Queue.Free) := Item;
Queue.Free := Marker’Succ (Queue.Free);
Queue.Is_Empty := False;

end Enqueue;

procedure Dequeue (Item : out Element; Queue : in out Queue_Type) is
begin
if Is_Empty (Queue) then
Queue_underflow;
end if;
Item := Queue.Elements (Queue.Top);
Queue.Top Marker’Succ (Queue.Top);
Queue.Is_Empty := Queue.Top = Queue.Free;
end Dequeue;
end Queue_Pack_Exceptions;

The Australlan National Universiy page 54 01 758 (L.

A queue

package body Queue_Pack_Exceptions is
procedure Enqueue (Item : Element; Queue : in out Queue_Type) is
begin
if Is_Full (Queue) then
Queue_overflow;
end if; [
Queue.Elements (Queue.Free) := Item;
Queue.Free := Marker’Succ (Queue.Free); ‘
Queue.Is_Empty := False;
end Enqueue;

procedure Dequeue (Item : out Element; Queue : in out Queue_Type)
begin
if Is_Empty (Queue) then I
Queue_underflow;

with proper exceptions

- —

All Types come with a long ‘
list of built-in operators.

Syntactically expressed
L as attributes.

is

Type attributes often make code

end if; more generic: ‘Succ works for

Ttem Queue.Elements (Queue.Top);
Queue.Top Marker’Succ (Queue.Top);
Queue.Is_Empty Queue.Top = Queue.Free;

end Dequeue;

end Queue_Pack_Exceptions;
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instance on enumeration types
as well ... “+ 1" does not.

woduction course” up to page 160




A queue with proper exceptions

package body Queue_Pack_Exceptions is
procedure Enqueue (Item : Element; Queue : in out Queue_Type) is A queue test with proper exceptions A queue test with proper exceptions
begin
if Is_Full (Queue) then
Queue_overflow;
end if;
Queue.Elements (Queue.Free) := Item;

Queue.Free := Marker’Succ (Queue.Free); procedure Queue_Test_Exceptions is
Queue.Is_Empty := False;

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions; with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_I0 ; use Ada.Text_IO; with Ada.Text_I0 ; use Ada.Text_IO;
procedure Queue_Test_Exceptions is .

Queue : Queue_Type; Queue : Queue_Type; [

end Enqueue; Item : Element; Item : Element;
begin

begin Enqueue (Turn, Queue); Enqueue (Turn, Queue); —

if Is_Empty (Queue) then Dequeue (Item, Queue);

Dequeue (Item, Queue);
Queue_underflow; Dequeue (Item, Queue); -- will produce a Queue_underflow exception Dequeue (Item, Queue); -- will produce a Queue_underflow exception
end if;

An exception handler has a choice
to handle, pass, or re-raise the
procedure Dequeue (Item : out Element; Queue : in out Queue_Type) is s ‘

— ——
Queue_underflow => Put (“Queue underflcw”);‘ Raised exceptions bre”ak the control
Queue_overflow => Put (“Queue overflow”); | flow and “propagate to the CIose%l
“exception handler” in the call-chain.

Item = Queue.Elements (Queue.Top); Queue_underflow => Put (“Queue underflow”);
Queue.Top Marker’Succ (Queue.Top); - Queue_overflow => Put (“Queue overflow”);
Queue.Is_Empty := Queue.Top = Queue.Free; . = ‘ end Queue_Test_Exceptions;

end Dequeue; . anything on this slide R

’ oti ? .
B P J Control flow is continued after the exception handler ‘
S— in case of a handled exception. |
©2020 Unve R Zimmer, The Austrafian National Universiy of 758 (Langu her/ inteoduction course” up to page 160) = —

end Queue_Test_Exceptions;

end Queue_Pack_Exceptions;

Language refresher / introduction course

A queue test with proper exceptions A queue with proper exceptions Ada

package Queue_Pack_Exceptions is

Information hiding

QueueSize : constant Positive := 10;
with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_IO ; use Ada.Text_IO;

.. introducing:
type Element

type Marker mod QueueSize;
procedure Queue_Test_Exceptions is type List is array (Marker) of Element;
Queue : Queue_Type; type Queue_Type is record
Item : Element; Top, Free : Marker := Marker’First;
Sl Le_EnptylS:iBoolsan - Shnte:; lead to inconsistent access. * Private types s assignments and comparisons are allowed
Enqueue (Turn, Queue); Elements : List; | _ -
Dequeue (Item, Queue);
Dequeue (Item, Queue); -- will produce a Queue_underflow exception

* Private declarations
S ww needed to compile specifications,

Wik padfge prt""idess.“:“ © yet not accessible for a user of the package.
‘internal’ structures which cal

end record; e Limited private types i entity cannot be assigned or compared
procedure Enqueue (Item: Element; Queue: in out Queue_Type);

procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
Queue_underflow => Put (“Queue underflow”); function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
Queue_overflow => Put (“Queue overflow”); . function Is_Full (Queue : Queue_Type) return Boolean is

anylhir\g on this slide (not Queue.Is_Empty and then Queue.Top = Queue.Free);

still not perfectly clear? J Queue_overflow, Queue_underflow : 5

end Queue_Test_Exceptions;

A end Queue_Pack_Exceptions;
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A queue with proper information hiding A queue with proper information hiding A queue
package Queue_Pack_Private is

with proper information hiding
package Queue_Pack_Private is package Queue_Pack_Private is [ éue’ue,’Tr;pe c;'rnow be used out-
QueueSize : constant Integer := 10; QueueSize : constant Integer := 10; ‘ side this package without any way
type Element is new Positive range 1..1000; to access its internal structure.

' type Queue_Type is . r—

QueueSize : constant Integer := 10;
type Element is new Positive range 1..1000;

type Element is new Positive range 1..1000;
type Queue_Type is H

H type Queue_Type is
procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;
function Is_Full (Queue : Queue_Type) return Boolean;

procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;
function Is_Full (Queue : Queue_Type) return Boolean;

procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;

function Is_Full (Queue : Queue_Type) return Boolean;
Queueoverflow, Queueunderflow : exception;

Queueoverflow, Queueunderflow : exception; | Queueoverflow, Queueunderflow : exception;

‘ private splits the
type Marker is mod QueueSize; type Marker is mod QueueSize; specification into a public
type List is array (Marker) of Element; ‘ and a private section.
type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;
end record;

type Marker is mod QueueSize;

‘ limited disables assignments and
type List is array (Marker) of Element;

comparisons for this type.
A user of this package would
now e.g. not be able to make a

o e . copy of a Queue_Type value.
: Boolean := True; | PY A

Elements : List;
‘ end record;

type List is array (Marker) of Element;

type Queue_Type is record type Queue_Type is record

Top, Free : Marker Marker’First; [ ‘ Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True; The private section is only Is_Empty

Elements : List; here so that the specifications

end record; can be separately compiled.

end Queue_Pack_Private; e

end Queue_Pack_Private;

end Queue_Pack_Private;




A queue with proper information hiding

package Queue_Pack_Private is

Queue_Type can now be used out-
QueueSize : constant Integer := 10; ‘ side this packagewithuutany way
type Element is new Positive range 1..1000; to access its internal structure.
type Queue_Type is

procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;
function Is_Full (Queve : Queue_Type) return Boolean;

Queueoverflow, Queueunderflow : exception; _—— :
Alternatively ‘=" and :=" operations ‘
‘ can be replaced with type-specific
versions (overloaded) or default
operations can be allowed. ‘

type Marker is mod QueueSize;

type List is array (Marker) of Element;

type Queue_Type is record
Top, Free : Marker Marker’First;
Is_Empty : Boolean := True;
Elements : List;

end record;

end Queue_Pack_Private;

A queue with proper information hiding
package body Queue_Pack_Private is
procedure Enqueue (Item: Element; Queue: in out Queue_Typ
begin
if Is_Full (Queue) then
Queueoverflow;

end if; )
Queue.Elements (Queue.Free) := Item;
Queue.Free Du ee);
Queue.Is_Empty se;
end Enqueue;
g t; le:

procedure Dequeue (
begin

in out Queue_Type) is

if Is_Emp 1 Queueunderflow; end if;
Item Elements (Queue.Top); — -
Queue.Top rarker (Queue.Top); ‘ besides the implementation of the ‘
Queue.Is_Emp ~ Queue.Top = Queue.Free; two functions which has been moved |

end Dequeue; | to the implerﬁﬂtaﬁﬂsef,“fn'mj

function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);
end Queue_Pack_Private;
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A queue test with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_I10 ; use Ada.Text_IO;

procedure Queue_Test_Private is

Queue, Queue_Copy : Queue_Type;
Item : Element;

T
begin lllegal operation on a limited type.
Queue_Copy := Queue; — —— -
-- compiler-error: “left hand of assignment must not be limited type”
Enqueue (Item => 1, Queue => Queue);
Dequeue (Item, Queue);
Dequeue (Item, Queue); -- would produce a “Queue underflow”
exception
when Queueunderflow => Put (“Queue underflow”);
when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Private;
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A queue with proper information hiding

package Queue_Pack_Private is

QueueSize : constant Integer := 10;

type Element is new Positive range 1..1000;

type Queue_Type is ;

procedure Enqueue (Item: Element; Queue: in out Queue_Type);

procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

function Is_Empty (Queue : Queue_Type) return Boolean;

function Is_Full (Queue : Queue_Type) return Boolean;

Queueoverflow, Queueunderflow : exception;

type Marker is mod QueueSize;
type List is array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True; — |
Elements : List; ... anything on this slide
end record; still not perfectly clear?
end Queue_Pack_Private; _

A queue with proper information hiding
package body Queue_Pack_Private is
procedure Enqueue (Item: Element; Queue: in out Queue_Typedfhis
begin
if Is_Full (Queue) then
Queueoverflow;
end if;
Queue.Elements (Queue.Free) :
Queue.Free
Queue.Is_Empty
end Enqueue;
procedure Dequeue (.
begin
if Is_Emp
Item “lements (Queue.Top);
Queue.Top —rker (Queue.Top);
Queue. Is_Emp: = Queue.Top = Queue.Free;
end Dequeue;
function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);
end Queue_Pack_Private;

... anything on this slide
still not perfectly clear?

A queue test with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_I0 ; use Ada.Text_IO;

procedure Queue_Test_Private is
Queue, Queue_Copy : Queue_Type;
Item : Element;
begin
Queue_Copy := Queue;
-- compiler-error: “left hand of assignment must not be limited type”
Enqueue (Item => 1, Queue => Queue);
Dequeue (Item, Queue); \
Dequeue (Item, Queue); -- would produce a “Queue underflow”

exception ‘
when Queueunderflow => Put (“Queue underflow”);
when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Private;

Parameters can be named or ‘
passed by order of definition.

‘ (Named parameters do not need ‘

to follow the definition order.
|

A queue with proper information hiding
package body Queue_Pack_Private is
procedure Enqueue (Item: Element; Queue: in out Queue_Typedfyis
begin
if Is_Full (Queue) then
Queueoverflow;
end if;
Queue.Elements (Queue.Free) :
Queue.Free
Queue.Is_Empty
end Enqueue;

procedure Dequeue (

begin
if Is_Emp
Item L Elements (Queue.Top);
Queue.Top =0 (Queue.Top);
Queue.Is_Emptd = Queue.Top = Queue.Free;

end Dequeue;

function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);

function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Private;
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A queue test with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_I0 ; use Ada.Text_IO;
procedure Queue_Test_Private is
Queue, Queue_Copy : Queue_Type;
Item : Element;
begin
Queue_Copy := Queue;
-- compiler-error: “left hand of assignment must not be limited type”
Enqueue (Item => 1, Queue => Queue);
Dequeue (Item, Queue);
Dequeue (Item, Queue); -- would produce a “Queue underflow”
exception
when Queueunderflow => Put (“Queue underflow”);
when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Private;

A queue test with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO ; use Ada.Text_IO;
procedure Queue_Test_Private is

Queue, Queue_Copy : Queue_Type;

Item : Element;
begin

Queue_Copy := Queue;

-- compiler-error: “left hand of assignment must not be limited type”

Enqueue (Item => 1, Queue => Queue);

Dequeue (Item, Queue);

Dequeue (Item, Queue); -- would produce a “Queue underflow”
exception

when Queueunderflow => Put (“Queue underflow”);

when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Private;

... anything on this slide ‘
still not perfectly clear? J
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Ada
Contracts

.. introducing:

® Pre- and Post-Conditions on methods
¢ Invariants on types

* For all, For any predicates

fresher /introduction course” up to page 160

A contracting queue

package Queue_Pack_Contract is
Queue_Size : constant Positive := 10;
type Element is new Positive range 1 .. 1000;
type Queue_Type is private;

. anything on this slide ‘
st not perfg(lly clear? ‘

procedure Enqueue (Item : Element; Q : in out Queue_Type) with
=> not Is_Full (Q),
=> not Is_Empty (Q) and then Length (Q) = Length (Q’0ld) + 1
and then Lookahead (Q, Length (Q)) = Item
and then ( ix in 1 .. Length (Q’01ld)
=> Lookahead (Q, ix) = Lookahead (Q’0ld, ix));
procedure Dequeue (Item : out Element; Q : in out Queue_Type) with
=> not Is_Empty (Q),
=> not Is_Full (Q) and then Length (Q) = Length (Q’0ld) - 1
and then ( ix in 1 .. Length (Q)
=> Lookahead (Q, ix) = Lookahead (Q’0ld, ix + 1));
function Is_Empty (Q : Queue_Type) return Boolean;
function Is_Full  (Q : Queue_Type) return Boolean;
function Length (Q : Queue_Type) return Natural;
function Lookahead (Q : Queue_Type; Depth : Positive) return Element;

A contracting queue

private
type Marker is mod Queue_Size; T
type List is array (Marker) of Element;

.. anything on this slide ‘
‘ still not perfectly clear? J

type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List; -- will be initialized to invalids
end record
=> (not Queue_Type.Is_Empty or else Queue_Type.Top = Queue_Type.Free)
and then ( ix in 1 .. Length (Queue_Type)
=> Lookahead (Queue_Type, ix)’Valid);
function Is_Empty (Q : Queue_Type) return Boolean is (Q.Is_Empty);
function Is_Full (Q : Queue_Type) return Boolean is
(not Q.Is_Empty and then Q.Top = Q.Free);
function Length (Q : Queue_Type) return Natural is
(if Is_Full (Q) then Queue_Size else Natural (Q.Free - Q.Top));
function Lookahead (Q : Queue_Type; Depth : Positive) return Element is
(Q.Elements (Q.Top + Marker (Depth - 1)));
end Queue_Pack_Contract;

A contracting queue

package Queue_Pack_Contract is
Queue_Size : constant Positive := 10;
type Element is new Positive range 1 .. 1000;
type Queue_Type is private;

procedure Enqueue (Item : Element; Q : in out Queue_Type) with

procedure Dequeue (Item : out Element; Q : in out Queue_Type) with

function Is_Empty : Queue_Type) return Boolean;
function Is_Full : Queue_Type) return Boolean;
function Length : Queue_Type) return Natural;
function Lookahead (Q : Queue_Type; Depth : Positive) return Element;

A contracting queue

ivate
type Marker is mod Queue_Size;
type List is array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List; -- will be initialized to invalids
end record

function Is_Empty (Q : Queue_Type) return Boolean is (Q.Is_Empty);
function Is_Full (Q : Queue_Type) return Boolean is
(not Q.Is_Empty and then Q.Top = Q.Free);
function Length (Q : Queue_Type) return Natural is
(if Is_Full (Q) then Queue_Size else Natural (Q.Free - Q.Top));
function Lookahead (Q : Queue_Type; Depth : Positive) return Element is
(Q.Elements (Q.Top + Marker (Depth - 1)));
end Queue_Pack_Contract;

A contracting queue

package body Queue_Pack_Contract is
procedure Enqueue (Item : Element; Q : in out Queue_Type) is
begin
Q.Elements (Q.Free) := Item;
Q.Free Q.Free + 1;
Q.Is_Empty := False;
end Enqueue;
procedure Dequeue : : out Queue_Type) is
begin
Item
Q.Top 1;
No checks in the implementation part,
as all required conditions have been
end Queue_Pack_Con#fact; guaranteed via the specifications.

end Dequeue;

A contracting queue

package Queue_Pack_Contract is [ pre-and Post-predicates are
Queue_Size : constant Positive := 10; checked before and after ‘
type Element is new Positive range 1 .. 1000; | e e e sy
type Queue_Type is private; I ittt ol

procedure Enqueue (Item : Element; Q : in out Queue_Type) with
=> not Is_Full (Q),
=> not Is_Empty (Q) and then Length (Q) = Length (Q’0ld) + 1
and then Lookahead (Q, Length (Q)) = Item
and then ( ix in 1 .. Length (Q’01ld) =
=> Lookahead (Q, ix) = Lookahead (Q’0ld, ix));
procedure Dequeue (Item : out Element; Q : in out Queue_Type) with
=> not Is_Empty (Q),
=> not Is_Full (Q) and then Length (Q) = Length (Q’0ld) - 1
and then ( ix in 1 .. Length (Q)
=> Lookahead (Q, ix) = Lookahead (Q’0ld, ix + 1));
ﬁ::ztiz: iz*?x;y Eg gj:z’gzzi :Zt::g :1 '/ and 5 quantifiers are expressed as
function Length  (Q : Queue_Type) return N|.for_aLL”and “for some” expressions resp. |
function Lookahead (Q : Queue_Type; Depth : Positive) return Element;

Original ‘
(Pre) values
‘ can still be ‘
referred to.

A contracting queue

private
type Marker is mod Queue_Size;
type List is array (Marker) of Element;

type Queue_Type is record

Top, Free : Marker := Marker’First;

Is_Empty : Boolean := True;

Elements : List; -- will be initialized to mvallds‘
end record

=> (not Queue_Type.Is_Empty or else Queue_Type.Top = Queue_Type.Free)

and then ( ix in 1 .. Length (Queue_Type)
=> Lookahead (Queue_Type, ix)’Valid);

‘ Type-Invariants are checked
on return from any operation
deflned in the pubhc part

function Is_Empty (Q : Queue_Type) return Boolean is (Q.Is_Empty);
function Is_Full (Q : Queue_Type) return Boolean is
(not Q.Is_Empty and then Q.Top = Q.Free);
function Length (Q : Queue_Type) return Natural is
(if Is_Full (Q) then Queue_Size else Natural (Q.Free - Q.Top));
function Lookahead (Q : Queue_Type; Depth : Positive) return Element is
(Q.Elements (Q.Top + Marker (Depth - 1)));
end Queue_Pack_Contract;

A contracting queue test

with Ada.Text_IO; use Ada.Text_IO;
with Exceptions; use Exceptions;
with Queue_Pack_Contract; use Queue_Pack_Contract;
with System.Assertions; use System.Assertions;
procedure Queue_Test_Contract is
Queue : Queue_Type;
Item : Element;
begin
Enqueue (Item => 1, Q => Queue);
Enqueue (Item => 2, Q => Queue);
Dequeue (Item, Queue); Put (Element’Image (Item));
Dequeue (Item, Queue); Put (Element’Image (Item));
Dequeue (Item, Queue);
Put (Element’Image (Item));
Put (“Queue is empty on exit: “); Put (Boolean’Image (Is_Empty (Queue)));
exception
when Exception_Id : Assert_Failure => Show_Exception (Exception_Id);
end Queue_Test_Contract;




A contracting queue test

with Ada.Text_IO; use Ada.Text_IO;
with Exceptions; use Exceptions;
with Queue_Pack_Contract; use Queue_Pack_Contract;
with System.Assertions; use System.Assertions;
procedure Queue_Test_Contract is

Queue : Queue_Type;

Item : Element;

Violated Pre-condition will raise 7
begin

Enqueue (Item => 1, Q => Queue); an assert failure exception.
Enqueue (Item => 2, Q => Queue);

Dequeue (Item, Queue); Put (Element’Image (Item));
Dequeue (Item, Queue); Put (Element’Image (Item));
Dequeue (Item, Queue);

Put (Element’Image (Item));

Put (“Queue is empty on exit: “); Put (Boolean’Image (Is_Empty (Queue)));
exception

when Exception_Id : Assert_Failure => Show_Exception (Exception_Id);
end Queue_Test_Contract;

Language refresher / introduction course

Ada

Generic (polymorphic) packages

... introducing:

 Specification of generic packages
* Instantiation of generic packages

A generic queue

type Element is

package Queue_Pack_Generic is
QueueSize: constant Integer := 10;
type Queue_Type is limited private;

Generic aspects can include:

procedure Enqueue (Itel Element; Queue: if,
procedure Dequeue (Item: out Element; Queue: if
function Is_Empty (Queue : Queue_Type) return £® Incomplete types
function Is_Full (Queue : Queue_Type) return Constants
Queueoverflow, Queueunderflow : exception;
private
type Marker is mod QueueSize;
type List is array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker := Marker’First; Default values can be provided
Is_Empty : Boolean := True; | (making those parameters av:c:wL

Type categories

Procedures and functions
Other packages
Objects (interfaces)

|
Elements : List; -

end record;
end Queue_Pack_Generic;

A contracting queue test

with Ada.Text_IO; use Ada.Text_IO;
with Exceptions; use Exceptions;
with Queue_Pack_Contract; use Queue_Pack_Contract;
with System.Assertions; use System.Assertions;
procedure Queue_Test_Contract is
Queue : Queue_Type;
Item : Element;
begin
Enqueue (Item => 1, Q => Queue);
Enqueue (Item => 2, Q => Queue);
Dequeue (Item, Queue); Put (Element’Image (Item));
Dequeue (Item, Queue); Put (Element’Image (Item));
Dequeue (Item, Queue);
Put (Element’Image (Item))
Put (“Queue is empty on exit: “); Put (Boolean’Image (Is_Empty (Queue)));
exception
when Exception_Id : Assert_Failure => Show_Exception (Exception_Id);

anything on this slide
still not perfectly clear?

end Queue_Test_Contract;

A generic queue

type Element is ;

package Queue_Pack_Generic is
QueueSize: constant Integer := 10;
type Queue_Type is limited private;

procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type)
function Is_Empty (Queue : Queue_Type) return Boolean;
function Is_Full (Queue : Queue_Type) return Boolean;
Queueoverflow, Queueunderflow : exception;
private
type Marker is mod QueueSize;
type List is array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;
end record;
end Queue_Pack_Generic;

A generic queue

type Element is
package Queue_Pack_Generic is
QueueSize: constant Integer := 10;
type Queue_Type is limited private;
procedure Enqueue (Itel Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;
function Is_Full (Queue : Queue_Type) return Boolea
Queueoverflow, Queueunderflow : exception;
private
type Marker is mod QueueSize;
type List is array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker := Marker’Firs
Is_Empty : Boolean := True;
Elements : List; is slide i
end record still not perfectly clear? |
end Queue_Pack_Generic; —

A contracted QL Exceptions are commonly preferred to
handle rare, yet valid situations.

package Queue_Pack_Contract is
)

procedure Enqueue (Item :

Contracts are commonly used to test program
correctness with respect to its specifications.

CuT-gUETESTypESWITT—————
=> True” according to specifications

procedure Dequeve (Item : out Element; Q : in out Queue_Type)
, == could also be “=> True” according to specifications

(&)

type Queue_Type is record

Those contracts can be used to fully specify
Top, Free : Marker := Marker’First;| gperations and types. Specifications should be
complete, consistent and canonical, while using

as little implementation details as possible.

A generic queue

=
type Element is 3 | The type of Element now becomes a 7

package Queue_Pack_Generic is | parameter of a generic package. L
QueueSize: constant Integer := 10; -
type Queue_Type is limited private;

procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;
function Is_Full (Queue : Queue_Type) return Boolean;
Queueoverflow, Queueunderflow : exception;
private o
Mfum zmlﬁmw is mod Queuesize; ) No restrictions (private) have |
ype List is array (Marker) of Element; |\ "o 0 N i be of Element.
type Queue_Type is record | B .
Top, Free : Marker := Marker’First; Haskell syntax:
Is_Empty : Boolean := True;
Elements : List;
end record;
end Queue_Pack_Generic;

enqueue :: a -> Queue a -> Queue 2

A generic queue
package body Queue_Pack_Generic is

usngcsm:n:mcmaﬁm%Emsm:ﬁo:?ﬁ;E;o:m%uémvm
cmww:
if Is_Full (Queue) then

Queue.Elements (Queue.Free) := ; L
o:m:m.?mm . _m?mw
o:mcm.HmwmauQ _
mami%cm"

Qu,mmoCm:m?m_‘Dof
end i

procedure Dequeue (I out Queue_Type) is

cmmw:

i se Heueunderflow; end if
ements (Queue.Top);
Queue. Top (Queue.Top);
Queue.Is_Empty\@s.Queue.Top = Queue.Free;
end Dequeue;

function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);

function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Generic;




A generic queue test program

; -= cannot apply ‘use’ clause here

with Ada.Text_IO ; use Ada.Text_IO;
procedure Queue_Test_Generic is

package Queue_Pack_Positive is

Queue_Pack_Generic ( B
Queue_Pack_Positive; -- ‘use’ clause can be applied to instantiated package

Queue : Queue_Type;

Ttem : Positive;
begin

Enqueue (Item => 1, Queue => Queue);

Dequeue (Item, Queue);

Dequeue (Item, Queue); will produce a “Queue underflow”
exception

when Queueunderflow => Put (“Queue underflow”);

when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Generic;

A generic queue

type Element is private;

package Queue_Pack_Generic is
QueueSize: constant Integer := 10;
type Queue_Type is limited private;
procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;
function Is_Full (Queue : Queue_Type) return Boolean;
Queueoverflow, Queueunderflow : exception;
private
type Marker is mod QueueSize;
type List is array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;
end record; \
end Queue_Pack_Generic; T—

‘ None of the packages so far can be
used in a concurrent environment.

A generic protected queue

generic
type Element is private;
type Index is mod <>; -- Modulo defines size of the queue.
package Queue_Pack_Protected_Generic is
type Queue_Type is limited private;
type Protected_Queue is
Enqueue (Item : Element);
Dequeue (Item : out Element);
Empty_Queue; B SS——
Is_Empty return Boolean;
Is_Full return Boolean; ‘ Generic components of the package: ‘
Element can be anything
while the Index need to ‘

Queue : Queue_Type; ‘
be a modulo type.

end Protected_Queue;
private L
type List is array (Index) of Element;
type Queue_Type is record
Top, Free : Index := Index’First;
Is_Empty : Boolean := True;
Elements : List;
end record;
end Queue_Pack_Protected_Generic;
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A generic queue test program

; —= cannot apply ‘use’ clause here

with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Generic is T

package Queue_Pack_Positive is Llnstantiale generic package

Queue_Pack_Generic (

)
Queue_Pack_Positive; -- ‘use’ clause can be applied to instantiated package

Queue : Queue_Type;

Ttem : Positive;
begin

Enqueue (Item => 1, Queue => Queue);

Dequeue (Item, Queue);

Dequeue (Item, Queue); -- will produce a “Queue underflow”
exception

when Queueunderflow => Put (“Queue underflow”);

when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Generic;

A generic queue test program

; —= cannot apply ‘use’ clause here

with Ada.Text_I0 ; use Ada.Text_IO;
procedure Queue_Test_Generic is
package Queue_Pack_Positive is
Queue_Pack_Generic (

Queue : Queue_Type;
Ttem : Positive;
begin
Enqueue (Item => 1, Queue => Queue);
Dequeue (Item, Queue);

s
Queue_Pack_Positive; -- ‘use’ clause can be applied to instantiated package

Dequeue (Item, Queue); -- will produce a “Queue underflow”

exception

when Queueunderflow => Put (“Queue underflow”); [
when Queueoverflow => Put (“Queue overflow”);

end Queue_Test_Generic;

_‘ Language refresher / introduction course

generic

Ada
Access routines for concurrent systems

... introducing:

¢ Protected objects

o Entry guards

o Side-effecting (mutually exclusive) entry and procedure calls
o Side-effect-free (concurrent) function calls

©2020 Uwe . Zimmer, The Australian National University

A generic protected queue

generic
type Element is private;
type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Protected_Generic is
type Queue_Type is limited private;

type Protected_Queue is -

Enqueue (Item : Element); ‘

Dequeue (Item : out Element);
Empty_Queue;
Is_Empty return Boolean;
Is_Full return Boolean;

Queue is protected for safe
concurrent access.

‘ Three categories of a access routines
are distinguished by the keywords:

‘ entry, procedure, function

Queue : Queue_Type;

end Protected_Queue;

private
type List is array (Index) of Element;
type Queue_Type is record
Top, Free : Index := Index’First;
Is_Empty : Boolean := True;
Elements : List;
end record;
end Queue_Pack_Protected_Generic;

22020 Usve . Zimmer, The Austalian National University
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type Element is private;

anything on this slide ‘
still not perfectly clear?J

A generic protected queue

type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Protected_Generic is
type Queue_Type is limited private;
type Protected_Queue is
Enqueue (Item : Element);
Dequeue (Item : out Element);
Empty_Queue;
Is_Empty return Boolean;
Is_Full return Boolean;

Queue : Queue_Type;
end Protected_Queue;
private
type List is array (Index) of Element;
type Queue_Type is record
Top, Free : Index := Index’First;
Is_Empty : Boolean := True;
Elements : List;
end record;
end Queue_Pack_Protected_Generic;
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A generic protected queue

generic
type Element is private;

type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Protected_Generic is
type Queue_Type is limited private;
type Protected_Queue is
‘ Enqueue (Item : Element);
Dequeue (Item : out Element);
‘ Empty_Queue;
Is_Empty return Boolean;
‘ Is_Full return Boolean;

Queue : Queue_Type;
end Protected_Queue;
private
type List is array (Index) of Element;
type Queue_Type is record
Top, Free : Index := Index’First;
Is_Empty : Boolean := True;
Elements : List;
end record;
end Queue_Pack_Protected_Generic;

2020 Unwe R. Zimme, The Ausiralian National University

‘ Procedures are mutually exclusive ‘
to all other access routine: |

‘ Rationale:
Procedures can modify
the protected data.
‘ Hence they need a guarantee
for exclusive access.
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A generic protected queue A generic protected queue A generic protected queue

generic generic
type Element is private; type Element is private;
type Index is mod <>; -- Modulo defines size of the queue. type Index is mod <>; -- Modulo defines size of the queue.
package Queue_Pack_Protected_Generic is package Queue_Pack_Protected_Generic is
type Queue_Type is limited private; type Queue_Type is limited private;
type Protected_Queue is type Protected_Queue is
Dequeve (Tten + out Elenenty, vt (L0 L | s are matuly excsive o l ot
d Empty. Queué' ’ B q . ’ access routines and also provide one Enpty_Queue;
1s Empzy retL‘lrn Boolean: ‘ Functions are mutually exclusive guard per entry which ne}ed to evaluate ‘ o Emp;y mt;m B —
LslFull return Eoolean; to procedures and entries, yet to True before entry is granted. s Full return Booleanr
- ‘ concurrent to other functions. - ’

generic

type Element is private;

type Index is mod <>; -- Modulo defines size of the queue.
package Queue_Pack_Protected_Generic is

type Queue_Type is limited private;
I type Protected_Queue is
‘ Enqueue (Item : Element);

Dequeue (Item : out Element);

Empty_Queue;
Is_Empty return Boolean;
Is_Full return Boolean; !
‘ The guard expressions are defined
in the implementation part.
end Protected_Queue; ‘"T —_—

Queue : Queue_Type; ‘7 B — Queue : Queue_Type;

Queue : Queue_Type;
end Protected_Queue;

Rationale: end Protected_Queue;
ati e:

private ‘

type List is array (Index) of Element; functions to be side-effect-free with type List is array (Index) of Element; \ Entries can be blocking even if the type List is array (Index) of Element;
u s side-effect-

type Queue_Type is record type Queue_Type is record protected object itself is unlocked. type Queue_Type is record
ta.
Top, Free : Index Index’First; ‘ respect to the protected da Top, Free : Index := Index’First; ‘ Hence a separate task waiting ‘ Top, Free : Index := Index’First;
Is_Empty : Boolean := True; Hence concurrent access can be. Is_Empty : Boolean := True; queue is provided per entry. Is_Empty : Boolean := True; | ‘
Elements : List; | granted among functions without risk. Elements : List; i A Elements : List; anything on this slide

end record; end record; - end record; still not perfectly clear?J
end Queue_Pack_Protected_Generic; -
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i private Rationale: e
The compiler enforces those ‘

end Queue_Pack_Protected_Generic; end Queue_Pack_Protected_Generic;
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A generic protected queue A generic protected queue A generic protected queue

package body Queue_Pack_Protected_Generic is package body Queue_Pack_Protected_Generic is

body Protected_Queue is body Protected_Queue is

Enqueue (Item : Element) not Is_Full is Enqueue (Item : Element) not Is_Full is

begin begin

Queue.Elements (Queue.Free) := Item; Queue.Free := Index’Succ (Queue.Free); Queue.Elements (Queue.Fre: := Item; Queue.Free := Index’Succ (Queue.Free); Queue.Elements (Queue.Free) := Item; Queue.Free := Index’Succ (Queue.Free);
Queue.Is_Empty := False; Queue.Is_Empty := False; Queue.Is_Empty := False;

end Enqueue; end Enqueue; end Enqueue;

Dequeue (Item : out Element) not Is_Empty is Dequeue (Item : out/Element) not Is_Empty is Dequeue (Item : out Element) not Is_Empty is

begin begin begin
Item := Queue.Elements (Queue.Top); Queue.Top := Index’Succ (Queue.Top); Item := Queue.Elemepits eue.Top); Queue.Top := Index’Succ (Queue.Top); Item
Queue.Is_Empty := Queue.Top = Queue.Free; __ Ouene Te FEmatu .= O

end Dequeue; [

package body Queue_Pack_Protected_Generic is
body Protected_Queue is

Enqueue (Item : Element) not Is_Full is
begin

:= Queue.Elements (Queue.Top); Queue.Top := Index’Succ (Queue.Top);
‘eue,Free; Queue.Ts_Empty := Queue.Top = Queue.Free;
Guard expressions end Dequeue;
follow after when in the ‘ c Empty_Queue is
‘ implementation of entries. begin
Queue.Top := Index’First; Queue.Free := Index’First; Queue.Is_Empty := True; ___Free := Tnday'Firet. OueueTo—fupty := True; Queue.Top := Index’First; Queue.Free := Index’First; Queue.Is_Empty := True;
end Empty_Queue; end Empty_Queue; Tasks are automatically blocked or released end Empty_Queue;
Is_Empty return Boolean is (Queue.Is_Empty); Is_Empty| depending on the state of the guard. Is_Empty return Boolean is (Queue.Is_Empty);
Is_Full return Boolean is Is_Full Guard expressions are re-evaluated on exiting an Is_Full return Boolean is S —
(not Queue.Ts_Empty and then Queue.Top = Queue.Free); (not Queue.ls,EW entry or procedure (not Queue.Is_Empty and then Queue.Top = Queue.Free); ‘
end Protected_Queue; end Protected_Queue; (no point to re-check them at any other time). end Protected_Queue;

end Queue_Pack_Protected_Generic; end Queue,Pack,ProtecteW Exactly one waiting task on o s released. end Queue_Pack_Protected_Generic; |

Empty_Queue is
begin

... anything on this slide
still not perfectly clear?
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A generic protected queue test A generic protected queue test A generic protected queue test

with Ada.Task_Identification; use Ada.Task_Identification; with Ada.Task_Identification; Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO; with Ada.Text_IO; Ada.Text_IO;
with Queue_Pack_Protected_Generic; with Queue_Pack_Protected_Generic;

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Protected_Generic;
procedure Queue_Test_Protected_Generic is procedure Queue_Test_Protected_Generic i
type Queue_Size is mod 3; type Queue_Size is mod 3;
package Queue_Pack_Protected_Character is package Queue_Pack_Protected_Character is
new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size); new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);
use Queue_Pack_Protected_Character; use Queue_Pack_Protected_Character; S—

Queue : Protected_Queue; Queue : Protected_Queue; ‘ If more than one instance of a specific Queue : Protected_Queue;

type Task_Index is range 1 .. 3; type Task_Index is range 1 .. 3; task is to be run then a task type (as type Task_Index is range 1 .. 3;

Producer; Producer; opposed to a concrete task) is declared. | R Multiple instances of a task can ‘

procedure Queue_Test_Protected_Generic is
type Queue_Size is mod 3;

package Queue_Pack_Protected_Character is
new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);
use Queue_Pack_Protected_Character;

Consumer; Consumer; e

Consumer; be instantiated e.g. by declaring ‘

Producers : array (Task_Index) of Producer; Producers : array (Task_Index) of Producer; Producers :

: array (Task_Index) of Producer;
Consumers : array (Task_Index) of Consumer; Consumers : array (Task_Index) of Consumer; Consumers : array (Task_Index) of Consumer;

) ) ) ‘ Tasks are started right when such an array is crea(ed.J
begin begin begin L RIS .

an array of this task type.

Queue_Test_Protected_Generic; Queue_Test_Protected_Generic; Queue_Test_Protected_Generic;
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A generic protected queue test

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Protected_Generic;
procedure Queue_Test_Protected_Generic is
type Queue_Size is mod 3;
package Queue_Pack_Protected_Character is
new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);
use Queue_Pack_Protected_Character;
Queue : Protected_Queue;
type Task_Index is range 1 .. 3;
Producer; ~ _ I
Consumer; These declarations spawned ‘
Producers : array (Task_Index) of Producer; «——1| offall the production code. |
Consumers : array (Task_Index) of Consumer; - — —

&)
begin

[ Often there are no statements for the “main tasl|

IS

Queue_Test_Protected_Generic; —
~_

(here explicitly stated by a null statement).

|
This task is prevented from terminating lhoug —‘
until all tasks inside its scope lermma\ed M

160
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A generic protected queue test

subtype Some_Characters is Character range

Producer is The executable code for a task is provlded in s body. |
begin [N ——e——
for Ch in Some_Characters loop
Put_Line (“Task “ & Image (Current_Task) & “ finds the queue to be “ &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
“ and prepares to add: “ & Character’Image (Ch) &
“ to the queue.”);
Queue.Enqueue (Ch); -- task might be blocked here!
end loop;
Put_Line (“<---- Task “ & Image (Current_Task) & “ terminates.”);
Producer;
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A generic protected queue test

subtype Some_Characters is Character range ‘a’

Producer is
begin
for Ch in Some_Characters loop
Put_Line (“Task “ & Image (Current_Task) & “ finds the queue to be “ &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
“ and prepares to add: “ & Character’Image (Ch) &
“ to the queue.”);
Queue.Enqueue (Ch); -- task might be blocked here!
end loop;
Put_Line (“<---- Task “ & Image (Current_Task) & “ terminates.”);
Producer;

[
.. anything on this slide ‘

still not perfectly clear? J
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A generic protected queue test

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Protected_Generic;
procedure Queue_Test_Protected_Generic is
type Queue_Size is mod 3;
package Queue_Pack_Protected_Character is
new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);
use Queue_Pack_Protected_Character;
Queue : Protected_Queue;
type Task_Index is range 1 .. 3;
Producer;
Consumer;
Producers : array (Task_Index) of Producer;
Consumers : array (Task_Index) of Consumer;

(&)

begin

Queue_Test_Protected_Generic; .. anything on this slide
still not perfectly clear?
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A generic protected queue test

subtype Some_Characters is Character range ‘a’ .. ‘f’;

Producer is
begin
for Ch in Some_Characters loop
Put_Line (“Task “ & Image (Current_Task) & “ finds the queue to be “ &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
and prepares to add: “ & Character’Image (Ch) &
to the queue.”);
Queue.Enqueue (Ch); -- task might be blocked here!
end loop;
Put_Line (“<---- Task “ & Imagé&~(Current_Task) & “ terminates.”);
Producer;
There are three of those tasks ‘
and they are all‘hammering’
the queue at full CPU sp(‘ed J

©2020 Uwe . Zimmer, The Australian National University page 11401758

A generic protected queue test

Consumer is
Item  : Character;
Counter : Natural := 0;
begin
loop
Queue.Dequeue (Item); -- task might be blocked here!
Counter := Natural’Succ (Counter);
Put_Line (“Task “ & Image (Current_Task) &
“ received: “ & Character’Image (Item) &
“ and the queue appears to be “ &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
“ afterwards.”);
exit when Item = Some_Characters’Last;
end loop;
Put_Line (“<---- Task “ & Image (Current_Task) &
“ terminates and received“ & Natural’Image (Counter) & “ items.”);
Consumer;

22020 Usve . Zimmer, The Austalian National University page 117 of 758 (“Language refresher  introduction course” up o page

A generic protected queue test

subtype Some_Characters is Character range

Producer is
begin
for Ch in Some_Characters loop
Put_Line (“Task “ & Image (Current_Task) & “ finds the queue to be “ &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
“ and prepares to add: “ & Character’Image (Ch) &
“ to the queue.”);
Queue.Enqueue (Ch); -- task might be blocked here!
end loop;
Put_Line (“<---- Task “ & Image (Current_Task) & “ terminates.”);
Producer;
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A generic protected queue test

subtype Some_Characters is Character range

Producer is
begin
for Ch in Some_Characters loop
Put_Line (“Task “ & Image (Current_Task) & “ finds the queue to be “ &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
“ and prepares to add: “ & Character’Image (Ch) &
“ to the queue.”);
Queue.Enqueue (Ch); -- task might be blocked here!

end loop;
Put_Line (“<---- Task “ & Image (Current_Task) & “ terminates.”);

Producer; —_— S —
Tasks automatically terminate once they reach their end declaration

(and once all inner tasks are terminated).
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A generic protected queue test

Another three tasks and are all ‘
‘hammering’ the queue at this
end and at full CPU speed.

Consumer is

Item : Character;
Counter : Natural := @;

begin R
loop
Queue.Dequeue (Item); -- task might be blocked here!
Counter := Natural’Succ (Counter);
Put_Line (“Task “ & Image (Current_Task) &
“ received: “ & Character’Image (Item) &
“ and the queue appears to be “ &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
“ afterwards.”);
exit when Item = Some_Characters’Last;
end loop;
Put_Line (“<---- Task “ & Image (Current_Task) &
“ terminates and received“ & Natural’Image (Counter) & “ items.”);
Consumer;
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A generic protected queue test

Consumer is
Item : Character;
Counter : Natural
begin
1loop
Queue.Dequeue (Item); -- task might be blocked here!
Counter := Natural’Succ (Counter);
Put_Line (“Task “ & Image (Current_Task) &
“ received: “ & Character’Image (Item) &
“ and the queue appears to be “ &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
“ afterwards.”);
exit when Item = Some_Characters’Last;
end loop;
Put_Line (“ Task “ & Image (Current_Task) &
“ terminates and received“ & Natural’Image (Counter) & “ items.”)

Consurer; = Bl

... anything on this slide ‘
still not perfectly clear? J
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Ada
Abstract types & dispatching

... introducing:
Abstract tagged types & subroutines (Interfaces)
Concrete implementation of abstract types

Dynamic dispatching to different packages,
tasks, protected types or partitions.

Synchronous message passing.
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A generic protected queue test

Task producers(1) finds the queue to be EMPTY and not full and pre
Task producers(1) finds the queue to be not empty and not full and
Task producers(1) finds the queue to be not empty and not full and
Task producers(1) finds the queue to be not empty and
Task producers(2) finds the queue to be not empty and
Task producers(3) finds the queue to be not empty and
Task consumers(1) received: ‘a’ and the
Task consumers(1) received: ‘b’ and the
Task consumers(1) received: ‘c’ and the queue appears to
Task consumers(1) received: ‘d’ and the queue appears to
Task consumers(1) received: ‘a’ and the

-~ Task producers(1) terminates.

Task consumers(3) received: ‘b’ and the queue appears to be EMPTY and

<---- Task consumers(2) terminates and received 1 items
-~ Task producers(2) terminates.
<-—- Task producers(3) terminates.
Task consumers(1) terminates and received 12 items.

Task consumers(3) terminates and received 5 items

©2020 Uwe . Zimmer, The page 1200

pares to add: ‘a’ to the queue.
prepares to add: ‘b’ to the queue.
prepares to add: ‘c’ to the queue.

FULL and prepares to add: ‘d’ to the queue.
FULL and prepares to add: ‘a’ to the queue.
FULL and prepares to add: ‘a’ to the queue.
queue appears to be not empty and FULL afterwards.

queue appears to be not empty and FULL afterwards.

be not empty and FULL afterwards.

be not empty and not full afterwards.
queue appears to be not empty and not full afterwards

not full afterwards

7756
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... introducing:

¢ Concrete implementation of abstract types

Dynamic dispatching to different packages,
tasks, protected types or partitions.

Synchronous message passing.
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A generic protected queue test

Task producers(1)
Task producers(2)
Task producers(1)
Task consumers (1)

finds the queue to be EMPTY and not full and prepares to add: ‘a’ to the queue
finds the queue to be EMPTY and not full and prepares to add: ‘a’ to the queue.
finds the queue to be not empty and not full and prepares to add: ‘b’ to the queue
received: ‘a’ and the queue appears to be EMPTY and not full afterwards

Task producers(3) finds the queue to be EMPTY and not full and prepares to add: ‘a’ to the queue
Task producers(1) finds the queue to be EMPTY and not full and prepares to add: ‘c’ to the queue.
Task producers(2) finds the queue to be EMPTY and not full and prepares to add: ‘b’ to the queue
Task consumers(2) received: ‘a’ and the queue appears to be EMPTY and not full afterwards

Task consumers(3) received: ‘b’ and the queue appears to be EMPTY and not full afterwards.

<=--- Task producers(1) terminates.

Task producers(2) finds the queue to be not empty and FULL and prepares to add

‘f” to the queue.
Task consumers(2) received:

“f” and the queue appears to be not empty and not full afterwards
Task consumers(3) received: ‘e’ and the queue appears to be EMPTY and not full afterwards
Task producers(3) finds the queue to be not empty and not full and prepares to add:
Task consumers(1) received
<

‘7 to the queue.
‘d” and the queue appears to be not empty and not full afterwards

Task producers(2) terminates.

Task consumers(2) terminates and received 5 items.

Task consumers(3) received: ‘e’ and the queue appears to be not empty and not full afterwards

<---- Task producers(3) terminates.

Task consumers(1) received:

<

“f” and the queue appears to be not empty and not full afterwards
Task consumers(3) received: ‘f’ and the queue appears to be EMPTY and not full afterwards
<---- Task consumers(1) terminates and received 6 items —

<-=-- Task consumers(3) terminates and received 7 items. Does this make any sense?
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An abstract queue

generic
type Element is private;
package Queue_Pack_Abstract is
type Queue_Interface is H
procedure Enqueue (Q : in out Queue_Interface; Item : Element) is
procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is
end Queue_Pack_Abstract;

An abstract queue

Motivation:
Different, derived implementations
(potentially on different computers)
can be passed around and referred to with the
‘ same common interface as defined here.

generic \
type Element is private;

package Queue_Pack_Abstract is
type Queue_Interface is

procedure Enqueue (Q : in out Queue_Interface; Item : Element) is
procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is
end Queue_Pack_Abstract;

An abstract queue

—

synchronized means that this interface can ‘
‘ only be implemented by synchronized entities

like protected objects (as seen above)

L or synchronous message passing.
generic

type Element is private; \ ‘
package Queue_Pack_Abstract is
type Queue_Interface is H
procedure Enqueue (Q : in out Queue_Interface; Item :
procedure Dequeue (Q : in out Queue_Interface; Item :
end Queue_Pack_Abstract;

|

|
Abstract, empty type ‘
definition which serves to
define interface template: J

Element) is
out Element) is

An abstract queue

generic
type Element is private;
package Queue_Pack_Abstract is
type Queue_Interface is H
procedure Enqueue (Q : in out Queue_Interface; Item : Element) is
procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is
end Queue_Pack_Abstract; |

‘ Abstract methods need to be ‘
overridden with concrete methods
U/hen anew type is derived from i




An abstract queue

generic
type Element is private;

package Queue_Pack_Abstract is
type Queue_Interface is ;

procedure Enqueue (Q : in out Queue_Interface; Item : Element) is
procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is

end Queue_Pack_Abstract;

... this does not require an implementation package (as all procedures are abstract) B

—
... anything on this slide ‘
still not perfectly clear7J

A concrete queue

with Queue_Pack_Abstract;
generic
Queue_Instance is Queue_Pack_Abstract (<>);
type Index is mod <>; -- Modulo defines size of the queue. —

A synchronous
‘ implementation of

package Queue_Pack_Concrete is
use Queue_Instance;
type Queue_Type is limited private; the abstract type
protected type Protected_Queve is new Queue_Interface (1 QueuecTnterface |
entry Enqueue (Item : Element); —
entry Dequeue (Item : out Element);
procedure Empty_Queue;
function Is_Empty return Boolean;
function Is_Full return Boolean;
private
Queue : Queue_Type;
end Protected_Queue;
private
(...) -- as all previous private queue declarations
end Queue_Pack_Concrete;

All abstract methods
are overridden
with concrete

A concrete queue

package body Queue_Pack_Concrete is
body Protected_Queue is
Enqueue (Item : Element) not Is_Full is
begin
Queue.Elements (Queue.Free) := Item; Queue.Free : deMgSucc (Queue.Free);
Queue.Is_Empty := False;
end Enqueue;

[
Dequeue (Item : out Element) I P 1s
begin
Item := Queue.Elements (Quey#®op) Npuepd op := Index’Succ (Queue.Top);
= (Rgue e,

Queue. Is_Emp;
end Dequeue;

frst; Queue.Free := Index’First; Queue.Is_Empty := True;

P7ty return Boolean is (Queue.ls_Empty);
Is_Full return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Protected_Queue;
end Queue_Pack_Concrete;
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A concrete queue

with Queue_Pack_Abstract;

generic
Queue_Instance is Queue_Pack_Abstract (<>);

type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Concrete is
use Queue_Instance;
type Queue_Type is limited private;
protected type Protected_Queue is Queue_Interface
entry Enqueue (Item : Element);
entry Dequeue (Item : out Element);
not overriding procedure Empty_Queue;
not overriding function Is_Empty return Boolean;
not overriding function Is_Full return Boolean;
private
Queue : Queue_Type;
end Protected_Queue;
private
(...) -- as all previous private queue declarations
end Queue_Pack_Concrete;

A concrete queue

with Queue_Pack_Abstract;

generic
Queue_Instance is Queue_Pack_Abstract (<>);

type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Concrete is
use Queue_Instance;
type Queue_Type is limited private;
protected type Protected_Queue is Queue_Interface
entry Enqueue (Item : Element);
entry Dequeue (Item : out Element); —
not overriding procedure Empty_Queue; Other (not-overriding)
not overriding function Is_Empty return Boolean; methods can be added.
not overriding function Is_Full return Boolean; === S— —
private
Queue : Queue_Type;
end Protected_Queue;
private
(...) -- as all previous private queue declarations
end Queue_Pack_Concrete;

A dispatching test

with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;
procedure Queue_Test_Dispatching is
package Queue_Pack_Abstract_Character is
new Queue_Pack_Abstract (Character)
use Queue_Pack_Abstract_Character;
type Queue_Size is mod 3;
package Queue_Pack_Character is
new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
use Queue_Pack_Character;
type Queue_Class is access all Queue_Interface’class;
task Queue_Holder; -- could be on an individual partition / separate computer
task Queue_User is -- could be on an individual partition / separate computer
entry Send_Queue (Remote_Queue : Queue_Class);
end Queue_User;
.
begin
null;
end Queue_Test_Dispatching;
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A concrete queue R

A generic package ‘

which takes another
generic package ‘
as a parameter.

with Queue_Pack_Abstract;
generic
Queue_Instance is Queue_Pack_Abstract (<>);
type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Concrete is
use Queue_Instance;
type Queue_Type is limited private;
protected type Protected_Queue is Queue_Interface
entry Enqueue (Item : Element);
entry Dequeue (Item : out Element);
procedure Empty_Queue;
function Is_Empty return Boolean;
function Is_Full return Boolean;
private
Queue : Queue_Type;
end Protected_Queue;
private
(...) -- as all previous private queue declarations
end Queue_Pack_Concrete;

A concrete queue

with Queue_Pack_Abstract;

generic
Queue_Instance is Queue_Pack_Abstract (<>);

type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Concrete is
use Queue_Instance;
type Queue_Type is limited private;
protected type Protected_Queue is Queue_Interface
entry Enqueue (Item : Element);
entry Dequeue (Item : out Element);
procedure Empty_Queue;
function Is_Empty return Boolean;
function Is_Full return Boolean;
private
Queue : Queue_Type; [
end Protected-Queue; anything on this slide |

private
o ?
(...) = as all previous private queue declarations still not perfectly clear? |

end Queue_Pack_Concrete;

A dispatching test

with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;
procedure Queue_Test_Dispatching is
package Queue_Pack_Abstract_Character is
new Queue_Pack_Abstract (Character); ‘
use Queue_Pack_Abstract_Character;

Sequence of inslanliation!
L

type Queue_Size is mod 3;
package Queue_Pack_Character is
new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
use Queue_Pack_Character;
type Queue_Class is access all Queue_Interface’class;
task Queue_Holder; -- could be on an individual partition / separate computer
task Queue_User is -- could be on an individual partition / separate computer
entry Send_Queue (Remote_Queue : Queue_Class);
end Queue_User;
.
begin
null;
end Queue_Test_Dispatching;
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A dispatching test

with Ada.Text_IO;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;

use Ada.Text_I0;

procedure Queue_Test_Dispatching is

Type which can refer to any
instance of Queue_Interface

package Queue_Pack_Abstract_Character is
new Queue_Pack_Abstract (Character);
use Queue_Pack_Abstract_Character;

type Queue_Size is mod 3;

package Queue_Pack_Character is
new Queue_Pack_Concrete (Queue

use Queue_Pack_Charac r

Stract_Character, Queue_Size);

type Queue_Class is access all Queue_Interface’class;
task Queue_Holder; -- could be on an individual partition / separate computer
task Queue_User is -- could be on an individual partition / separate computer
entry Send_Queue (Remote_Queue : Queue_Class);
end Queue_User;
.
begin
null;
end Queue_Test_Dispatching;
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A dispatching test (cont.)

task body Queue_Holder is

Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character;
begin
Queue_User.Send_Queue (Local_Queue);
Local_Queue.all.Dequeue (Item);
Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
end Queue_Holder;
task body Queue_User is
Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do

Remote_Queue.all.Enqueve (‘r’); -- potentially a remote procedure calll
Local_Queue.all.Enqueue (‘1°);

end Send_Queue;
Local_Queue.all.Dequeue (Item);

Put_Line (“Local dequeue (User)
end Queue_User;

: “ & Character’Image (Item));
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A dispatching test (cont.)

task body Queue_Holder is

Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character;
begin
Queue_User.Send_Queue (Local_Queue);
Local_Queue.all.Dequeue (Item);
Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
end Queue_Holder;
task body Queue_User is
Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do

Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
Local_Queue.all.Enqueue (‘1’)

end Send_Queue;

—_— S
Adding to both queues J
| E— —

Local_Queue.all.Dequeue (Item);

Put_Line (“Local dequeue (User)
end Queue_User;

: “ & Character’Image (Item));
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A dispatching test

with Ada.Text_IO;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;

use Ada.Text_I0;

procedure Queue_Test_Dispatching is

package Queue_Pack_Abstract_Character is
new Queue_Pack_Abstract (Character);

use Queue_Pack_Abstract_Character;

type Queue_Size is mod 3;

package Queue_Pack_Character is
new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);

use Queue_Pack_Character;

type Queue_Class is access all Queue_Interface’class;

task Queue_Holder; -- could be on an individual partition / separate computer

task Queue_User is -- could be on an individual partition / separate computer
entry Send_Queue (Remote_Queue : Queue_Class);

end Queue_User; I ——
. ‘ Declaring two concrete tasks.

begin
null;
end Queue_Test_Dispatching;

\\(Queue,User has a synchronous message passil
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A dispatching test (cont.)

task body Queue_Holder is

Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character;

begin
gQueue,User.Send,Queue (Local_Queue); ‘ Declaring local queues in each tas
Local_Queue.all.Dequeue (Item); -
Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
end Queue_Holder;
task body Queue_User is
Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do
Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
Local_Queue.all.Enqueue (‘1');
end Send_Queue;
Local_Queue.all.Dequeue (Item);
Put_Line (“Local dequeue (User)
end Queue_User;

: “ & Character’Image (Item));

A dispatching test (cont) [

separate comput
task body Queue_Holder is

Local_Queue : constant Queue_Class := new Protected_Queue;
Ttem : Character; R
begin ‘ I
Queue_User.Send_Queue (Local_Queue); different in nature:
‘ The first call is potentially

Local_Queue.all.Dequeue (Item);
tunneled through a network

Put_Line (“Local dequeue (Holder): “ & Charact
end Queue_Holder;
task body Queue_User is
Local_Queue : constant Queue_Class := new ProJ
Item : Character; R —
begin
accept Send_Queue (Remote_Queue : Queue_Class) do
ntially a remote procedure calll

Remote_Queue.all.Enqueue (‘r’);
Local_Queue.all.Enqueue (‘1’)

end Send_Queue;

Local_Queue.all.Dequeue (Item);

Put_Line (“Local dequeue (User)
end Queue_User;

: “ & Character’Image (Item));

reifesher / introduction course” up 1o page 160)
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Tasks could run on
ers

These two calls can be very

to

another computer and thus
uses a remote data structure.
The second call is always a local call ‘
and using a local data-structure.
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A dispatching test

with Ada.Text_IO;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;

use Ada.Text_I0;

procedure Queue_Test_Dispatching is

package Queue_Pack_Abstract_Character is
new Queue_Pack_Abstract (Character);

use Queue_Pack_Abstract_Character;

type Queue_Size is mod 3;

package Queue_Pack_Character is
new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);

use Queue_Pack_Character;

type Queue_Class is access all Queue_Interface’class;

task Queue_Holder; -- could be on an individual partition / separate computer

task Queue_User is -- could be on an individual partition / separate computer
entry Send_Queue (Remote_Queue : Queue_Class);

end Queue_User;

. ——
anything on this slide ‘

null; still not perfectly clear?J
end Queue_Test_Dispatching; M
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A dispatching test (cont.)

task body Queue_Holder is

Local _Queue : constant Queue_Class := new Protected_Queue;
Item : Character;

Handing over the Holder's queue
via synchronous message passing.

begin
Queue_User.Send_Queue (Local_Queue);
Local_Queue.all.Dequeue (Item); —
Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
end Queue_Holder;
task body Queue_User is
Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do
Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
Local_Queue.all.Enqueue (‘1’);
end Send_Queue;
Local_Queue.all.Dequeue (Item);
Put_Line (“Local dequeue (User)
end Queue_User;

: “ & Character’Image (Item));

A dispatching test (cont.)

task body Queue_Holder is

Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character;

begin I

Queue_User.Send_Queue (Local_Queue); Reading out ‘r’

Local_Queue.all.Dequeue (Item); —
Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
end Queue_Holder;

task body Queue_User is
Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do
Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
Local_Queue.all.Enqueue (‘1’);

end Send_Queue;
Local_Queue.all.Dequeue (Item);

Put_Line (“Local dequeue (User)
end Queue_User;

: “ & Character’Image (Item));

Reading out ‘1’ J

e / introduction course” up to page 160)
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A dispatching test (cont.)

task body Queue_Holder is

Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character; — ‘
begin ... anything on this slide

i ?
Queue_User.Send_Queue (Local_Queue); still not perfectly clear? J

Local_Queue.all.Dequeue (Item);

Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
end Queue_Holder;

task body Queue_User is
Local_Queue : constant Queue_Class := new Protected_Queue;
Ttem : Character;

begin
accept Send_Queue (Remote_Queue : Queue_Class) do

Remote_Queue.all.Enqueve (‘r’); -- potentially a remote procedure calll
Local_Queue.all.Enqueue (‘1’)

end Send_Queue;
Local_Queue.all.Dequeue (Item);

Put_Line (“Local dequeue (User) : “ & Character’Image (Item));
end Queue_User;
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A data-parallel stencil

config const n = 100,
max_iterations = 50,
epsilon = 1.0E-5,
initial_border = 1.0;
const Matrix_w_Borders = {0 .. n+1,0 ..n+1,0 .. n+1},
Matrix = Matrix_w_Borders [1 .. n, 1 .. n, 1 .. n],
Single_Border = Matrix.exterior (1, @, 0);
var Field : [Matrix_w_Borders] real,
Next_Field : [Matrix] real;
proc Stencil (M : [/* Matrix_w_Borders */] real, (i, j, k) : index (Matrix)) : real {
return (M [i - 1, j, k]
MLi+1, j, k]
MU, j -1, k]
MU, §+1, k]
M i, 3, k+1]
MU, 3, k-1 7 6;

A data-parallel stencil

config const n 100,
max_iterations = 50,
epsilon 1.0E-5,
initial_border = 1.0;
const Matrix_w_Borders = {@ .. n+ 1,0 ..n+1,0 ..n+1},
Matrix = Matrix_w_Borders [1 .. n, 1 .. n, 1 .. n],
Single_Border = Matrix.exterior (1, @, @); ——— |
‘ Declaring matrices ofdi((erem,J

var Field : [Matrix_w_Borders] real, 5
L yet related dimensions.

Next_Field : [Matrix] real;
proc Stencil (M : [/* Matrix_w_Borders /] real, (i, j, k) : index (Matrix)) : real {
return (M [i - 1, j, k]
+M+1, 4, K]
+MO, §-1, k]
+M[i, j+1, k]
+ ML, g, k+ 1]
+MIO, 3, k-11) /765

Language refresher / introduction course

Ada
Ada language status

Established language standard with free and professionally

supported compilers available for all major OSs and platforms.

Emphasis on maintainability, high-integrity and efficiency.
Stand-alone runtime environments for embedded systems.

High integrity, real-time profiles part of the
standard sz e.g. Ravenscar profile.

787 cockpit (press release photo)

w Used in many large scale and/or high integrity projects

¢ Commonly used in aviation industry, high speed trains,
metro-systems, space programs and military programs.
e ... also increasingly on small platforms / micro-controllers.

TGV, Renaud Chodkowski 2012

©2020 Uwe . Zimmer, The Austalian National University page 147 of 758 (“Language refresher / introduction course” up to page 160)

A data-parallel stencil

[
config const n Configuration constants can be ‘
max_iterations set via command line options:
epsilon . /Stencil --n=500 |
initial_border .0; —
const Matrix_w_Borders = {0 .. n+1, @ ..n+1, 0 ..n+1},
Matrix Matrix_w_Borders [1 .. n, 1 .. n, 1 .. n],
Single_Border = Matrix.exterior (1, @, 0);
var Field : [Matrix_w_Borders] real,
Next_Field : [Matrix] real;
proc Stencil (M : [/* Matrix_w_Borders */]1 real, (i, j, k) : index (Matrix)) : real {
return (M [i - 1, j,
+MI[i+1, 3,
+MILO, j-1,
+M[i, j+1,
+ MU, j, k+
+MI[i, j, k -

A data-parallel stencil

config const n
max_iterations
epsilon
initial_border
const Matrix_w_Borders = {0 .. n+ 1,0 ..n+1,0 ..
Matrix Matrix_w_Borders [1 .. n, .
Single_Border = Matrix.exterior (1, @, 0); E————
Note the index type

var Field : [Matrix_w_Borders] real,
Next_Field : [Matrix] real;

proc Stencil (M : [/* Matrix_w_Borders /] real, ) : real {

return (M [i - 1, j,

+M[i+1, 3, . ) ]
+M[i, j-1, Function which calculates

+M[i, j+1 ‘ a “stencil” value at a spot
+ ML, j, k+ inside a given matrix ‘
+MI[i, j, k - . L

Language refresher / introduction course

Chapel

Currently under development at Cray.
(originally for the DARPA High Productivity Computing Systems initiative.)

(< Targeted at massively parallel computers
Language primitives for ...

Data parallelism:

w Distributed data storage with fine grained control (“domains”).
1 Concurrent map operations (forall).

= Concurrent fold operations (scan, reduce).

Task parallelism:

w concurrent loops and blocks (cobegin, coforall).
Synchronization:

w Task synchronization, synchronized variables, atomic sections.
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A data-parallel stencil

Defining domains to be used i
for multi-dimensional array

declarations and assignments. J

config const n = 100,
max_iterations = 50, ‘
epsilon = 1.0E-5,
initial_border = 1.0; L

const Matrix_w_Borders = {0 .. n+1, 0 ..n+1, 0 ..n+1}
Matrix = Matrix_w_Borders [1 .. n, 1 .. n, 1 .. n],
Single_Border = Matrix.exterior (1, @, @);
var Field : [Matrix_w_Borders] real,
Next_Field : [Matrix] real;
proc Stencil (M : [/* Matrix_w_Borders */] real, (i, j, k) : index (Matrix)) : real {
return (M [i - 1, j, k]
MLi+1, j, k]
MU, j -1, k]
MU, §+1, k]
M i, j, k+1]
MU, 3, k-1 /7 6;

A data-parallel stencil

config const n 100,
max_iterations = 50,
epsilon 1.0E-5,
initial_border = 1.0;
const Matrix_w_Borders = {0 .. n+1,0 ..n+1,0 ..
Matrix = Matrix_w_Borders [1 .. n,
Single_Border = Matrix.exterior (1, @, 0);
var Field : [Matrix_w_Borders] real,
Next_Field : [Matrix] real;
proc Stencil (M : [/* Matrix_w_Borders */] real, (i, j, k) : index (Matrix)) : real {
return (M [i - 1, j, k]
+M+1, 4, K]
+MIO, § -1,k
+M[i, j+1, k]
+MI[i, j, k+1] e ———— ‘
+ M, §, k-1D) /65 ... anything on this slide
still not perfectly clear? J




A data-parallel stencil (cont.)

Field [Single_Border] = initial_border;
for 1 in 1 .. max_iterations {

forall Matrix_Indices in Matrix do
Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

const delta = max reduce abs (Field [Matri - Next_Field);
Field [Matrix] = Next_Field;

if delta < epsilon then break;

A data-parallel stencil (cont.)

Field [Single_Border] = initial_border;
for 1 in 1 .. max_iterations {

forall Matrix_Indices in Matrix do
Next_Field (Matrix_Indices) Stencil (Field, Matrix_Indices);

const delta = max reduce abs (Field [Matrix] - Next.

Data parallel (divide-and-conquer)

Field [Matrix] = Next_Field; para g 1 ]
application of the m 3 > ‘

if delta < epsilon then break;

“3-d data-parallel version” of (Haskell):

foldr max minBound $ zipWith (=) field next_field ‘

| foldr max minfernd ® =P i |

A data-parallel stencil (cont.)

Field [Single_Border] = initial_border; alar to 2-d array-sli
echnically a 3-d domain with
for 1in 1 .. max_iterations { two degenerate dimensions)

forall Matrix_Indices in Matrix do
Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

const delta = max reduce abs (Field [Matrix] - Next_Field);

Field [Matrix] = Next_Field; , ignment

if delta < epsilon then break;
3}
3

A data-parallel stencil (cont.)

Field [Single_Border] = initial_border;
for 1in 1 .. max_iterations {

forall Matrix_Indices in Matrix do
Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

const delta = max reduce abs (Field [Matrix] - Next_Field);
Field [Matrix] = Next_Field;

if delta < epsilon then break;
3
3

.. anything on th
still not perfectly clear?

A data-parallel stencil (cont.)

Field [Single_Border] = initial_border; Data parallel application
for 1 1 e of the Stencil function
e to the whole 3-d matrix
forall Matrix_Indices in Matrix do

Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

const delta = max reduce abs (Field [Matr: - Next_Field);
Field [Matrix] = Next_Field;

if delta < epsilon then break;

ge refresher / introduction course

Summary

Language refresher / introduction course

* Specification and implementation (body) parts, basic types

* Exceptions & Contracts

¢ Information hiding in specifications (‘private’)

* Generic programming

e Tasking

* Monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)
* Abstract types and dispatc

e Data parallel operations

ol University Jp 1o page 160)




Systems, Networks & Concurrency 2020

Introduction to Concurrency

Uwe R. Zimmer - The Australian National University

Introduction to Concurrency

Forms of concurrency

What is concurrency?
Working definitions:

e Literally ‘concurrent’ means:
Adj.: Running together in space, as parallel lines; go-
ing on side by side, as proceedings; occurring togeth-
er, as events or circumstances; existing or arising togeth-
er; conjoint, associated [Oxfords English Dictionary]

¢ Technically ‘concurrent’ is usually defined negatively as:

If there is no observer who can identify two events as being in strict
temporal sequence (i.e. one event has fully terminated before the

other one started) then these two events are considered concurrent.

©2020 Uwe R. Zimmes, The Ausialian Nation = 58 (chapter 1: “Introduction o Concurrency” up to
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Introduction to Concurrency

References for this chapter
[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming
2006, second edition, Prentice-Hall, ISBN 0-13-711821-X
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Introduction to Concurrency

Forms of concurrency

Why do we need/have concurrency?

* Physics, engineering, electronics, biology, ...

* Sequential processing is suggested by most core computer architectures
... yet (almost) all current processor architectures have concurrent elements
... and most computer systems are part of a concurrent network.

* Strict sequential processing is suggested by widely used programming languages.

1 Sequential programming delivers some
fundamental components for concurrent programming

i but we need to add a number of further crucial concepts

©2020 Uwe R. Zimmer, The Austalian N page 165 of 758 (chapter 1 “Introduction fo Concurrency

Introduction to Concurrency

Forms of concurrency

What is concurrency?
Working definitions:
« Literally ‘concurrent’ means:
Adj.: Running together in space, as parallel lines; go-
ing on side by side, as proceedings; occurring togeth-
er, as events or circumstances; existing or arising togeth-
er; conjoint, associated [Oxfords English Dictionary]

©2020 Uwe R. Zimmer, The Ausiralian National University page 163 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Introduction to Concurrency

Forms of concurrency

Why would a computer scientist consider concurrency?

.. to be able to connect computer systems with the real world
... to be able to employ / design concurrent parts of computer architectures
... to construct complex software packages (operating systems, compilers, databases, ...)
.. to understand when sequential and/or concurrent programming is required
.. or: to understand when sequential or concurrent programming can be chosen freely
... to enhance the reactivity of a system
... to enhance the performance of a system
... to be able to design embedded systems

¢ Zimmer, The Ausiralian National University of 758 (chapter 1: “niroduction 1o Concurrency” up to page 202)

Introduction to Concurrency

Forms of concurrency
A computer scientist’s view on concurrency

Overlapped 1/0 and

computation

" o amaie o T PO  Parallel Machines &

Multi-programming distributed operating systems

w Add (non-deterministic)
communication channels

* Multi-processor systems
= Add physical/real concurrency

w Allow multiple independent programs
to be executed on one CPU

Multi-tasking ¢ General network architectures

= Allow multiple interacting processes
to be executed on one CPU

w Allow for any form of communicating,
distributed entities

©2020 Ue R. Zimmer, The A

Introduction to Concurrency

Forms of concurrency

A computer scientist’s view on concurrenc
y

Terminology for physically concurrent machines architectures:
[singe instruction, single data] [multiple instruction, single data]
& Sequential processors s Pipelined processors

[singe instruction, multiple data] [multiple instruction, multiple data]
& Vector processors = Multi-processors or computer networks

2020 Unve K. Zimmer, The " i page 168 of 758 (chaper | unrency” up to page 202)

Introduction to Concurrency

Forms of concurrency
An engineer’s view on concurrency
1 Multiple form
the actual environment and/or task at hand
= In order to model and control such a system, its needs to be considered

are often preferred over a single high-performance cpu
& The system design of usually strictly

1 “Inrodaction to Concurr




Introduction to Concurrency

Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:
non-deterministic phenomena
non-observable system states

results may depend on more than just the input parameters and states at start time
(timing, throughput, load, available resources, signals ... throughout the execution)
non-reproducible w= debugging?

Introduction to Concurrency

Models and Terminology

The concurrent programming abstraction

1. What appears sequential on a higher abstraction level,
is usually concurrent at a lower abstraction level:

- e.g. Concurrent operating system or hardware components,
which might not be visible at a higher programming level

2. What appears concurrent on a higher abstraction level,
might be sequential at a lower abstraction level:
& e.g. Multi-processing system,
which are executed on a single, sequential computing node

Introduction to Concurrency

Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:

¢ non-deterministic phenomena
¢ non-observable system states
¢ results may depend on more than just the input parameters and states at start time
(timing, throughput, load, available resources, signals ... throughout the execution)
¢ non-reproducible w= debugging?
Meaningful employment of concurrent systems features:

¢ non-determinism employed where the underlying system is non-deterministic
¢ non-determinism employed where the actual execution sequence is meaningless
 synchronization employed where adequate ... but only there

w Control & monitor where required (and do it right), but not more ...

1: “ntroduction to Concurrency” up to

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

e ‘concurrent’ is technically defined negatively as:
If there is no observer who can identify two events as being in
strict temporal sequence (i.e. one event has fully terminated before the
other one starts up), then these two events are considered concurrent.

e ‘concurrent’ in the context of programming and logic:
“Concurrent programming abstraction is the study of
interleaved execution sequences of the atomic

instructions of sequential processes.”
(Ben-Ari)

Introduction to Concurrency

Models and Terminology

Concurrency on different abstraction levels/perspectives

Large scale, high bandwidth interconnected nodes (“supercomputers”)
Networked computing nodes

Standalone computing nodes - including local buses & interfaces sub-systems
Operating systems (& distributed operating systems)

Individual concurrent units inside one CPU
Individual electronic circuits

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Multiple sequential programs (processes or threads)
which are executed concurrently.

P.S. itis generally assumed that concurrent execution means that there
is one execution unit (processor) per sequential program
* even though this is usually not technically correct, it is still an often valid,
conservative assumption in the context of concurrent programming.

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

(implicit interaction):
Multiple concurrent execution units
compete for one shared resource.

(explicit interaction):
Explicit passing of information and/or explicit synchronization.

758 (chapter 1: “Introdaction to Concurrency” up o p

Introduction to Concurrency

Models and Terminology

The concurrent programming abstraction

Time-line or Sequence?

Consider time (durations) explicitly:
= Real-time systems s join the appropriate courses

Consider the sequence of interaction points only:
w Non-real-time systems i stay in your seat
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Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Correctness of concurrent non-real-time systems

[ I:

¢ does not depend on clock speeds / execution times / delays
¢ does not depend on actual interleaving of concurrent processes

w= holds true for all possible sequences of interaction points (interleavings)

page 179 of 758 (chapter 1: “Intoc

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Standard concepts of correctness:

¢ Partial correctness:

(P(1) Nterminates(Program (I,0))) = Q(I,0)
¢ Total correctness:

P(I) = (terminates (Program (1,0)) A Q(1,0))

where /, O are input and output sets,
P is a property on the input set,
and Q is a relation between input and output sets

w do these concepts apply to and are sufficient for concurrent systems?

i
_‘z - Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Correctness vs. testing in concurrent systems:

Slight changes in external triggers may (and usually does)
result in completely different schedules (interleaving):
= Concurrent programs which depend in any way on external influences cannot be
tested without modelling and embedding those influences into the test process.
1 Designs which are provably correct with respect to the specification
and are independent of the actual timing behavior are essential.
P.S. some timing restrictions for the scheduling still persist
in non-real-time systems, e.g. ‘fairness’

1+ “Introduction to Cor

83
_‘z - Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:
— Termination is often not intended or even considered a failure

' (P(I) A Processes (1,S)) = 0Q(1,S)

where 00Q means that Q does always hold

(P() A Processes (1,5)) = <Q(1,S)
where &Q means that Q does eventually hold (and will then stay true)
and S is the current state of the concurrent system

—r |
o]

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Atomic operations:

Correctness proofs / designs in concurrent systems rely on the assumptions of

‘Atomic operations’ [detailed discussion later]:

Complex and powerful atomic operations ease the correctness
proofs, but may limit flexibility in the design

Simple atomic operations are theoretically sufficient, but may lead to
complex systems which correctness cannot be proven in practice.

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

. (P() A Processes (1,5)) = 0Q(I,S)

where JQ means that Q does always hold

Examples:

* Mutual exclusion (no resource collisions)

¢ Absence of deadlocks
(and other forms of ‘silent death’ and ‘freeze’ conditions)

* Specified responsiveness or free capabilities
(typical in real-time / embedded systems or server applications)

AT Un

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

(P(I) A Processes (1,5)) = <Q(1,S)
where <Q means that Q does eventually hold (and will then stay true)
and S is the current state of the concurrent system

Examples:

* Requests need to complete eventually

¢ The state of the system needs to be displayed eventually
* No part of the system is to be delayed forever (fairness)
w Interesting liveness properties can be very hard to prove

2020 Unwe K. Zimmer, The Australian National University page 185 of 758 (chapter 1: “Inirod
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Introduction to processes and threads

control-flow

Specific configurations
only, e.g.:

* Distributed pcontrollers.
* Physical process
control systems:

1 cpu per task,
connected viaa
bus-system.

= Process management
(scheduling) not required.

1= Shared memory access
need to be coordinated.

22020 Usve R. Zimmer, The Ausiralian National University age jon to Concurrency” up 1o p

Introduction to Concurrency

Introduction to processes and threads

1 CPU for all
control-flows

¢ OS: emulate one CPU
for every control-flow:
Multi-tasking
operating system

w Support for memory
protection essential.

= Process management
(scheduling) required.

w5 Shared memory access
need to be coordinated.




188 189

- Introduction to Concurrency =S

Introduction to processes and threads

address space n Threads

Threads (individual control-
flows) can be handled:

Introduction to Concurrency
Introduction to processes and threads
address space n

address space 1 address space 1

* Inside the OS:

+ Control flow(s) Kernel scheduling.
* Thread can easily

be connected to
external events (I/O).

w Kernel has full
knowledge about all
processes as well as their
states, requirements and
currently held resources.

process 1
process n

* Outside the OS:

¢ Threads may need
to go through their
parent process
to access 1/0O.

Introduction to Concurrency

Introduction to Concurrency

Introduction to processes and threads

Process Control Blocks

Process Control Blocks (PCBs)

Introduction to processes and threads

Processes < Threads

Process Id

Also processes can share memory and the specific definition of threads
is different in different operating systems and contexts:

Process state: Process Id
{created, ready, executing, blocked, suspended, bored ...}

Process state

Scheduling attributes:

w Threads can be regarded as a group of processes, which o . X
Priorities, deadlines, consumed CPU-time, ...

share some resources ( rocess-hierarchy).

Scheduling info

Due to the overlap in resources, the attributes attached to CPU state: Saved/restored information while context Saved registers
threads are less than for ‘first-class-citizen-processes’ switches (incl. the program counter, stack pointer, ....) (complete CPU state)

Memory attributes / privileges:

w Thread ching and inter-thread communication can be 1es /
Memory base, limits, shared are

more efficient than switching on process level.

Memory spaces /
privileges

Allocated resources / privileges:

Scheduling of threads depends on the actual thread implementations: A .
Open and requested devices and files, ...

Allocated resources /
privileges

¢ e.g. user-level control-flows, which the kernel has no knowledge about at all.
¢ e.g. kernel-level control-flows, which are handled as processes with some restrictions.

... PCBs (links thereof) are commonly enqueued at a certain
state or condition (awaiting access or change in state)

Introduction to Concurrency

Process states Process states

created: the ta ready to run, but created: the task is ready to run, but

not yet considered by any dispatcher not yet considered by any dispatcher
aiting for admission finish waiting for admission

ready: ready to run

ready: ready to run -
w waiting for a free CPU

aiting for a free CPU
running: holds a CPU and executes running: holds a CPU and executes

block blocked: not ready to run

ease blocked: not ready to run e
aiting for a resource waiting for a resource
i suspended HEES f e sus!)ended states: swapped out of
. main memo S— main memo
suspend (swap ou) (none time critical processes) ! 2 (none time critical processes)
waiting for main memory wr waiting for main memory

suspend (swap-out) suspend (swap-out
(s e pace (and other resource: s L4 space (and other resources)

main memory
main memory

dispatching and suspending can
now be independent modules

ready, susp. clease —{ blocked, susp.

IThem -~ =\ aEm

|- release —{ blocked, susp.

secondary
memory

memory

secondary

- Introduction to Concurrency

Introduction to processes and threads

address space 1 address space n

All CPUs share the same
physical address space
(and access to resources).

process 1
process n

Any process / thread

any available CPU.

shared memory

a ]

Introduction to Concurrency
Process states
@  created: the task is ready to run, but
not yet considered by any dispatcher

finish aiting for admission

dispatch  ready: ready to run
ready — aiting for a free CPU
\  running: holds a CPU and executes

block * blocked: not read

release
AN i waiting for a resource

admit

main memory

Introduction to Concurrency

Process states

pre-emption or cycle done

batch read' executin
creation adrjitted dispatch termination|
=== {1

unblock suspend (swap-out)
ready, suspended
‘ ‘ ‘ ‘ ‘ ‘ suspend (swap-out)

blocked, suspended
AR

swap-out ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

blocked

swap-in
unblock

block or synchronize




Introduction to Concurrency

UNIX processes

In UNIX systems tasks are created by ‘cloning’
pid = fork ();
Iting in a duplication of the current pro
turning ‘0’ to the newly c J o ¢ cess)

s to the creating process (the ‘parent’ process)
id of actual exception handling)

Frequent usage:
if ( O =0 {
.. the child’s task ..
. often implemented as: exec (“absolute path to executable file“, “args“);
exit (@); /# terminate child process */
b {
.. the parent’s task ..
pid = (); /* wait for the termination of one child process */

Introduction to Concurrency

Concurrent programming languages

Language candidates

concurrency = Impl (potential) = No support:

concurrenc .
Ada, C++, Rust Y « Eiffel, Pascal

Chill e Lisp, Haskell, Caml, « C
Miranda, and any other
functional language
Smalltalk, Squeak Libraries & interfaces
Prolog (outside language
definitions)

Erlang

Go

Chapel, X10
Occam, CSP

* Fortran, Cobol, Basic...

Esterel, Lustre, Signal
All .net languag . POSIX
* MPI (Me:

Passing Interface)

Java, Scala, Clojure Wannabe concurrency

Algol 68, Modul. * Ruby, Python

Modula-3 [mostly broken due to
global interpreter locks]

Introduction to Concurrency

UNIX processes

Communication between UNIX tasks (‘pipes

int data_pipe [2], c,
if ( (data_pipe)
perror (“no pipe
}
if (fork O == 0) { }else {
(data_pipe [11); (data_pipe [01);
while ((rc = while ((c = getchar ()) > @) {
(data_pipe [@ , ) >0) { if ( (data_pipe[1], &c, 1)
putchar (c); perror (“pipe broken“)
(data_pipe [11);
xit (1);
perror (“pipe broken
(data_pipe [01);
exit (1); (data_pipe [11);
pid = (
(data_pipe [01); ex )

Introduction to Concurrency

Languages with implicit concurrency: e.g. functional programming
Implicit concurrency in some programming scheme

uicksort in a functional language (here: Haskell):
gsort [] =[]
gsort (x:xs) =
Pure functional programming is side-effect free
w Parameters can be evaluated independently s could run concurrently
Some functional languages allow for lazy evaluation, ub-
expressions are not necessarily evaluated completely:

borderline =
= If n equals zero then the evaluation of g(n) and h(n) can be stopped (or not even be started).
w Concurrent program parts should be interruptible in this case.
Short-circuit evaluations in imperative languages assume explicit seq

and then

- Introduction to Concurrency

Concurrent programming languages

Requirement

Concept of tasks, threads or other potentially concurrent entities

Frequently requested essential elements

Support for management or concurrent entities (create, terminate
Support for contention management (mutual exclusion, ...)
Support for synchronization (semaphores, monitors, ...)

Support for communication (me passing, shared memory, rpc

Support for protection (tasks, memory, devices, ...)

Introduction to Concurrency

Summary
Concurrency — The Basic Concepts

Forms of concurrency

Models and terminology

¢ Abstractions and perspectives: computer science, phy &engin
* Observations: non-determinism, atomicity, interaction, interleaving
« Correctness in concurrent systems

Processes and threads

* Basic concepts and notions

* Proc ates

Concurrent programming languages:

* Explicit concurrency: e.g. Ada, Chapel
functional programming - e.g

Haskell
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Mutual Exclusion

Uwe R. Zimmer - The Australian National University

Mutual Exclusion

Problem specification

The general mutual exclusion scenario
* N processes execute (infinite) instruction sequences concurrently.
Each instruction belongs to either a critical or non-critical section.
w Safety property ‘Mutual exclusion”:
Instructions from critical sections of two or more processes
must never be interleaved!
* Further assumptions:

* Pre- and post-protocols can be executed before and after each critical section.
¢ Processes may delay infinitely in non-critical sections.
* Processes do not delay infinitely in critical sections.

©2020 Uwe R. Zimmer, The Ausiralian National University ‘page 206 of 758 (chapter 2: “Mutual Exclusion” up o page 253

_‘z Mutual Exclusion

References for this chapter

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming
2006, second edition, Prentice-Hall, ISBN 0-13-711821-X

page 204 of apter 2: “Mutual Exclusion” up to page 253)

Mutual Exclusion

Mutual exclusion: Atomic load & store operations

Atomic load & store operations

= Assumption 1: every individual base memory cell (word) load and store access is atomic
= Assumption 2: there is no atomic combined load-store access

G : Natural := 0; -- assumed to be mapped on a 1-word cell in memory

task body P1 is task body P2 is task body P3 is
begin begin begin
G:=1 G:=2
G:=G+G6; G:=G+G6;
end P1; end P2;

w What is the value of 6?
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Mutual Exclusion

Problem specification

The general mutual exclusion scenario

* N processes execute (infinite) instruction sequences concurrently.
Each instruction belongs to either a critical or non-critical section.
= Safety property ‘Mutual exclusion”:
Instructions from critical sections of two or more processes
must never be interleaved!
* More required properties:
No deadlocks: If one or multiple processes try to enter their

critical sections then exactly one of them must succeed.

No starvation: Every process which tries to enter one of

his critical sections must succeed eventually.

Efficiency: The decision which process may enter the critical section must be made
efficiently in all cases, i.e. also when there is no contention in the first place.

Mutual Exclusion

Mutual exclusion: Atomic load & store operations

Atomic load & store operations

= Assumption 1: every individual base memory cell (word) load and store access is atomic

= Assumption 2: there is no atomic combined load-store access

G : Natural := 0; -- assumed to be mapped on a 1-word cell in memory
task body P1 is task body P2 is task body P3 is
begin

=G +G;
end P3;

wr After the first global initialisation, G can have almost any value between @ and 24
w After the first global initialisation, G will have exactly one value between ¢ and 24
wr After all tasks terminated, G will have exactly one value between 2 and 24

we R. Zimmer, The Ausiralian National University ~page 206 of 758 (chapter 2: “Mutual Exclusion” up to page 253

Mutual Exclusion

Mutual exclusion: First attempt

type Task_Token is mod 2;
Turn: Task_Token := 0;

task body Pe is task body P1 is
begin begin

Mutual Exclusion

Mutual exclusion: First attempt

type Task_Token is mod 2;
Turn: Task_Token := @;

task body PO is task body P1 is
begin begin

non_critical_section_1;

Mutual Exclusion

Mutual exclusion: First attempt

type Task_Token is mod 2;
Turn: Task_Token := 0;

task body Pe is
begin

non_critical_section_0; % non_critical_section_1;

non_critical_section_0;
loop exit when end loop

section_0;

end loop;
end PO;

= Mutual exclusion?
w Deadlock?
= Starvation?

w Work without contention?

2020 Uwe K. Zimmer, The Ausiralian National University

non_critical_section_1;
loop exit when end loop

end loop;
end P1;
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non_critical_section_0;
loop exit when end loop
critical_section_0

end loop;
end PO;

Locks up, if there is no contention!

22020 Usve R. Zimmer, The Ausiralian National University

loop exit when end loop
ction_1

end loop;
end P1;
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loop exit when endyloop

)

cWon_o; N

end loop;
end PO;

Inefficient!

© 2020 Uwe R. Zimmer, The Australian Nati

loop exit when end loop
1_section

end loop;
end P1;

scatter:
if

end if
into the non-critical sections
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Mutual exclusion: Second attempt

type Critical_Section_State is (In_CS, Out_CS);

_‘2 - Mutual Exclusion

]

— Mutual Exclusion

Mutual exclusion: Second attempt

type Critical_Section_State is (In_CS, Out_CS);

Mutual exclusion: Third attempt

type Critical_Section_State is (In_CS, Out_CS);

C1, C2: Critical_Section_State :=

task body P1 is
begin

non_critical_section_1;

exit when

end loop;
end P1;

= Any better?

©2020 Uwe R. Zimmer, The Ausiralian National University

out_Cs;

task body P2 is
begin

non_critical_section_2;

exit when

end loop;
end P2;
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_ Mutual Exclusion

C1, C2: Critical_Section_State := Out_CS;

task body P1 is

task body P2 is

begin begin

non_critical_section_1;

exit when

non_critical_section_2;

exit when

end loop; end loop;
end P1; end P2;

1= No mutual exclusion!

©2020 Uwe R. Zimmer, The Austalian National University
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e
_‘2 _ Mutual Exclusion

C1, C2: Critical_Section_State := Out_CS;

task body P1 is

task body P2 is

begin begin

non_critical_section_1;

exit when
end loop

non_critical_section_2;

exit when
end loop

end loop; end loop;
end P1; end P2;

= Any better?

©2020 Uwe R. Zimmer, The Ausiralian National University
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_ Mutual Exclusion

Mutual exclusion: Third attempt

Mutual exclusion: Forth attempt

type Critical_Section_State is (In_CS, Out_CS);

Mutual exclusion: Forth attempt

type Critical_Section_State is (In_CS, Out_CS);

type Critical_Section_State is (In_CS, Out_CS);
o

C1, C2: Critical_Section_State

task body P1 is
begin

non_critical_section_1;

task body P2 is
begin

non_critical_section_2;

C1, C2: Critical_Section_State := Out_CS;
task body P1 is

task body P2 is

begin begin

non_critical_section_1;

non_critical_section_2;

C1, C2: Critical_Section_State
task body P1 is

task body P2 is

begin begin

non_critical_section_1;

non_critical_section_2;

exit when exit when
end loop end loop

end loop; end loop;
end P1; end P2;

Potential deadlock!

©2020 Uwe R. Zimmer, The Ausiralian National University
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exit when exit when

end loop end loop

end loop; end loop;
end P1; end P2;

= Making any progress?

©2020 Uwe . Zimmer, The Australian National University page?
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exit when exit when

end loop end loop

end loop; end loop;
end P1; end P2;

Potential starvation! = Potential global livelock!
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Mutual Exclusion

e
=< Mutual Exclusion

Mutual exclusion: Peterson’s Algorithm
type Task_Range is mod 2;
type Critical_Section_State is (In_CS, Out_CS);

Mutual exclusion: Decker’s Algorithm |

type Task_Range is mod 2; type Task_Range is mod 2; ‘ = Two tasks only!
type Critical_Section_State is (In_CS, Out_CS); type Critical_Section_State is (In_CS, Out_CS); S

CsS : array (Task_Range) of Critical_Section_State := (others => Out_CS); €SS : array (Task_Range) of Critical Section_State := (others => Out_CS); €SS : array (Task_Range) of Critical_Section_State := (others => Out_CS);
Turn : Task_Range := Task_Range’First; Turn : Task_Range := Task_Range’First; Last : Task_Range := Task_Range’First;

Mutual exclusion: Decker’s Algorithm

task type One_Of_Two_Tasks

(this_Task : Task_Range);

task body One_Of_Two_Tasks is
other_Task : Task_Range

loop
exit when

if

loop

:= this_Task + 1; exit when

non_critical_section

2020 Unne R. Zimme, The Ausialian

end loop

end if
end loop

end One_Of_

‘page 218 of 758 (chapter 2: “Mutual Exclusion” up to

task type One_Of_Two_Tasks
(this_Task : Task_Range);

task body One_Of_Two_Tasks is

other_Task : Task_Range
:= this_Task + 1;

non_critical_section

——

The Australian National

loop
exit when
if

loop
exit when
end loop

end if
end loop

end One_Of_Two_Tasks;
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task type One_Of_Two_Tasks
(this_Task : Task_Range);

task body One_Of_Two_Tasks is
other_Task : Task_Range

:= this_Task + 1;

non_critical_section

©2020 Uwe R. Zimmer,

Loop
exit when

or else

end One_Of_Two_Tasks;
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Mutual exclusion: Peterson’s Algorithm r

type Task_Range is mod 2; s Two tasks only!
‘ .

type Critical_Section_State is (In_CS, Out_CS); R
CSS : array (Task_Range) of Critical_Section_State := (others => 0ut_CS);
Last : Task_Range := Task_Range’First;

task type One_Of_Two_Tasks
(this_Task : Task_Range);

task body One_Of_Two_Tasks is

other_Task : Task_Range
:= this_Task + 1; loop
begin exit when
non_critical_section
or else

S J end One_Of_Two_Tasks;
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Mutual Exclusion

Mutual exclusion: Bakery Algorithm

No_Of _Tasks : constant Positive :

type Task_Range is mod No_Of_Tasks;

Choosing : array (Task_Range) of Boolean := (others => False);
Ticket : array (Task_Range) of Natural := (others => 0);

L loop
task type P (this_id: Task_Range); exit when
task body P is

begin or else
non_critcal_section_1; or else

and then
end loop
end if
end loop

exit when not

end Loop end loop;

end P;
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Mutual Exclusion

Mutual Exclusion

Problem specification

The general mutual exclusion scenario

* N processes execute (infinite) instruction sequences concurrently.
Each instruction belongs to either a critical or non-critical section.
1= Safety property ‘Mutual exclusion’:
Instructions from critical sections of two or more processes
must never be interleaved!

* More required properties:
No deadlocks: If one or multiple processes try to enter their critic-
al sections then exactly one of them must succeed.
No starvation: Every process which tries to enter one of
his critical sections must succeed eventually.

Efficiency: The decision which process may enter the critical section must
be made efficiently in all cases, i.e. also when there is no contention.

©2020 Uwe R. Zimmer, The Austalian National University
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e
_‘z _ Mutual Exclusion

Mutual exclusion: Bakery Algorithm

No_Of_Tasks : constant Positive := ..; T
type Task_Range is mod No_Of_Tasks; |
Choosing : array (Task_Range) of Boolean := (others 3
Ticket : array (Task_Range) of Natural := (others A‘
K . X loop |
task type P (this_id: Task_Range); exit
task body P is |
begin or elsE™
non_critcal_sec[ " e
wr Extensive and communication
intensive protocol
(even if there is no contention)
1o ——————
end loop

exit when not

end Toop end loop;

end P;

©2020 Uwe . Zimmer, The Australian National University

Mutual exclusion: Bakery Algorithm

The idea of the Bakery Algorithm

A set of N Processes P;...Py competing for mutually exclusive execution of their critical regions.
Every process P; out of Py...Py supplies: a globally readable number t; (‘ticket’) (initialized to ‘0").

* Before a process P; enters a critical section:
* P;draws a new number t; > t/;‘v'/ *i
* P;is allowed to enter the critical section iff: V/j
* After a process left a critical section:
* Pjresetsitst; = 0
Issues:
w Can you ensure that processes won't read each others ticket numbers while still calculating?

= Can you ensure that no two processes draw the same number?
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Mutual Exclusion

Beyond atomic memory access

Realistic hardware support

Atomic test-and-set operations:
e [L:=CC:=1]

Atomic exchange operations:
e [Temp:=L; L:=C; C:=Temp]

Memory cell reservations:
o 1:& G-read by using a special instruction, which puts a ‘reservation”on C
¢ ... calculate a <new value> for C ...

e C:= <new value>;
- succeeds iff C was not manipulated by other processors or devices since the reservation
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re .
_ Mutual Exclusion

Mutual exclusion: atomic test-and-set operation
type Flag is Natural range 0..1; C : Flag := 0;

task body Pi is task body Pj is
L : Flag; L : Flag;
begin begin

Loop 1loop

loop loop

exit when exit when

end loop end loop

end loop; end loop;
end Pi; end Pj;

wr Does that work?
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Mutual Exclusion

Mutual exclusion: atomic test-and-set operation
type Flag is Natural range 0..1; C : Flag := 0;

task body Pi i task body Pj is
L : Flag; L : Flag;
begin begin

loop loop

loop loop

exit when exit when

end loop end loop

end loop; end loop;
end Pi; end Pj;

v Individual starvation possible! Busy waiting loops!

52020 Usve K. Zimmer, The Australian National University

page 226 of 758 (chapter 2: “Matual Exclusion” up o p

re .
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Mutual exclusion: atomic exchange operation

type Flag is Natural range 0..1; C : Flag := 0;

task body Pi is task body Pj is
L : Flag := 1; L : Flag := 1;
begin begin

Loop Loop

loop loop

exit when exit when

end loop end loop

end loop; end loop;
end Pi; end Pj;

wr Does that work?
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Mutual Exclusion

Mutual exclusion: atomic exchange operation

type Flag is Natural range 0..1; C : Flag

task body Pi is
L : Flag := 1;
begin

loop

loop

exit when

end loop

end loop;
end Pi;

©2020 Uwe R. Zimmer, The Ausialian National University

0;

task body Pj is
L : Flag := 1;
begin

loop

loop

exit when

end loop

end loop;
end Pj;
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Mutual Exclusion

Mutual exclusion ... or the lack thereof

Count : Integer := 0;

task body Enter is

begin

for i := 1 .. 100 loop
Count Count + 1;
end loop;

end Enter;

task body Leave is

begin

for i := 1 .. 100 loop
Count Count - 1;
end loop;

end Leave;

- What is the value of Count after both programs complete?

© 2020 Uwe R. Zimmes, The Ausialian National University

0x00000000

‘page 233 of 758 (chapter 2: “Mutual Exclusion” up ta

0x00000000 ; #0 means unlocked

, =Lock
, =Count
, #1
for_enter:
, #100
end_for_enter
fail_enter:
, [r3]
, fail_enter ; if locked
, #1 ; lock value
; lock

|
Critical se(‘(ionJ

for_enter
end_for_enter:
©2020 Une R. Zim
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=Lock
=Count
#1
for_leave:
, #100
end_for_leave
fail_leave:
, [r3]
, fail_leave ; if locked
, #1 ; lock value
[r3] ; lock

for_leave
end_for_leave:

‘page 236 of 758 (chapter 2: “Mutual Excl

Mutua

| Exclusion

Mut

| exclusion:

type Flag is Natural range 0..1; C : Flag :=
task body Pi is
L : Flag;
begin
loop
1oop
.R L

exit when Untouched and L = @

end loop

end loop;
end Pi;

ww Does that work?
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0x00000000

, =Count

, #1

for_enter:
, #100

end_for_enter

0;

task body Pj is
L : Flag;
begin
loop
1oop
R I

y cell reservation

exit when Untouched and L = @

end loop

end loop;
end Pj;
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, =Count
#1
for_leave:
, #100

end_for_leave

Negotiate who goes first J

L #
for_enter
end_for_ente

©2020 Uwe . Zimmer, The o National University

0x00000000

L #1
for_leave

(chapter 2: Mutual Exclusion” up t

0x00000000 ; #0 means unlocked

Any context switch
needs to clear

for_enter: q
reservations

, #100
end_for_enter
fail_enter:
, [r3]
, fail_enter ; if locked
, #1 ; lock value
, [r3] ; try lock
, fail_enter ; if touched
; sync memory

cal section

, #1
for_enter
end_for_enter:
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for_leave:

end_for_leave

fail_leave:
, [r3]

, fail_leave

, [r3]

, fail_leave

, #1
for_leave
end_for_leave:

; if locked
; lock value
; try lock

; 1if touched
; sync memory

Critical section

Mutual Exclusion

type Flag is Natural range 0..1; C

task body Pi is
L : Flag;

begin
loop

Loop
LR

Mutual exclusion: memory cell reservation

r

Any context switch
needs to clear

reservations

exit when Untouched and L = 0;

end loop

end loop;

end Pi;
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0x00000000
0x00000000

, =Lock
, =Count

, #1

for_enter:

, #100
end_for_enter

fail_enter:

, [r3]
, fail_enter

for_enter

end_for_enter:

Flag

= 0;

task body Pj is
L : Flag;
begin
loop
1loop
R L

exit when Untouched and L = @
end loop
end loop;

end Pj;
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; #0 means unlocked

if locked
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0x00000000
0x00000000
=Lock
, =Count

, # Any context switch
needs to clear

for_enter:

, #100

end_for_enter

fail_enter:

]
fail_enter
, #1
[r3]

fail_enter

, =Lock
, =Count
L #1
for_leave:

, #100

end_for_leave

fail_leave:

, [r3]

, fail_leave ; if locked

for_leave

of 758 chapter 2 “Mutual Exclusion” up to page 253)

; #0 means unlocked

reservations

; if locked

; lock value

try lock

; if touched
; sync memory

———
Critical seclionJ

; sync memory
; unlock value
; unlock

for_enter

end_for_enter:

02020 Une R,
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for_leave:
, #100
end_for_leave

fail_leave:
, [r3]
, fail_leave ; if locked
, #1 ; lock value
, [r3] ; try lock
, fail_leave ; if touched

; sync memory

; sync memory
; unlock value
; unlock

for_leave
end_for_leave:
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0x00000000
0x00000000 ; #0 means unlocked
, =Lock , =Lock
, =Count , =Count T
[l Any context switch "
needs to clear

h for_leave:
410 reservations 1o
, #100 , #100

end_for_enter end_for_leave

Asks for permission
for_enter:

fail_enter: fail_leave:
, [r3l i
, fail_enter ; if locked , fail_leave ; if locked
; lock value , #1 ; lock value
; try lock , [r3] ; try lock
fail_enter ; if touched , fail_leave ; if touched
; sync memory ; sync memory

1
Critical section |

; sync memory ; sync memory
, #0 ; unlock value , #0 ; unlock value
, [r3] ; unlock , [r3] ; unlock
for_enter for_leave
end_for_enter: end_for_leave:
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Mutual Exclusion

Beyond atomic hardware operations

Semaphores
.. as supplied by operating systems and runtime environments

¢ aset of processes P;...Py agree on a variable S operating
as a flag to indicate synchronization conditions

an atomic operation Wait on S: (aka ‘Suspend_Until_True’, ‘sem_wait, ...)
Process P; : Wait (S):
if then
P

i

an atomic operation Signal on S: (aka ‘Set_True’, ‘sem_post’,
Process P; : Signal (S):
then
else

w then the variable S is called a Semaphore in a scheduling environment.
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0x00000000
0x00000001

, =Sema , =Sema
, =Count , =Count
, #1 , #1
for_enter: for_leave:
, #100 , #100
end_for_enter end_for_leave
wait_2:
, [r3] , [r3]
, wait_1 ; if Semaphore = , wait_2 ; if Semaphore = @
L # ; dec Semaphore L # ; dec Semaphore
, [r31 ; update , [r3]1 ; update

‘CimicaT;eL onJ

[ —
Critical section

for_enter for_leave
end_for_enter: end_for_leave:

02020 Une R, 1, The Ausiralian National Universiy page 2
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Mutual Exclusion

Mutual exclusion

0x00000000

, =Count

¥ Any context switch

for_enter: needs to clear
, #100 reservations
end_for_enter
enter_strex_fail:
, [r4] ; tag [r4] as exclusive
, #1
, [r41 ; only if untouched
, enter_strex_fail
, #1
for_enter

end_for_enter:

Asks for forgiveness J

, =Count B

, #1
for_leave:
, #100
end_for_leave
leave_strex_fail:
, [r4] ; tag [r4] as exclusive
, #1
, [r41 ; only if untouched
, leave_strex_fail
L #
for_leave

end_for_leave:

= Light weight solution — sometimes referred to as “lock-free” or “lockless”.
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Mutual Exclusion

Beyond atomic hardware operations

Semaphores

Types of semaphores:

Binary semaphores: restricted to [0, 1] or [False, True] resp.
Multiple V (Signal) calls have the same effect than a single call.

¢ Atomic hardware operations support binary semaphores.

 Binary semaphores are sufficient to create all other semaphore forms.

General semaphores (counting semaphores): non-negative number; (range lim-
ited by the system) P and V increment and decrement the semaphore by one.

Quantity semaphores: The increment (and decrement) value for
the semaphore is specified as a parameter with P and V.

- All types of semaphores must be initialized:

often the number of processes which are allowed inside a critical section, i.e."1".
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0x00000000
0x00000001

Any context switch
needs to clear

for_enter: .
reservations

, #100
end_for_enter

o ]
, wait_1 ; if Semaphore = @
L # ; dec Semaphore
, [r3] ; try update
, wait_1 ; if touched
; sync memory

| Critical section ‘
e

, #1

for_enter
end_for.

(chapter 2: “Mutual Exclusion” up to page 253)

, =Sema
, =Count
, #1
for_leave:
, #100
end_for_leave

wait_2:

, [r3]

, wait_2 ; if Semaphore = @

L # ; dec Semaphore

, [r3] ; try update

, wait_2 ; if touched

; sync memory -

Critical sec on |

L

for_leave
end_for_leave:

Mutual Exclusion

Beyond atomic hardware operations

Semaphores

Basic definition (Dijkstra 1968)

Assuming the following three conditions on a shared memory cell between processes:

a set of processes agree on a variable S operating as a

flag to indicate synchronization conditions

an atomic operation P on S — for ‘passeren’ (Dutch for ‘pass’):

P(S): w this is a potentially delaying operation

an atomic operation V on S — for ‘vrygeven’ (Dutch for ‘to release’):

V(S):
- then the variable S is called a Semaphore.
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0x00000000
0x00000001

, =Sema
, =Count
L #1
for_enter:
, #100
end_for_enter
wait_1:
, [r3]

, wait_1 ; if Semaphore =

T(’Z’ri(ical seclionj

for_enter
end_for_enter:
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0x00000000
0x00000001

, =Sema
, =Count
i

Any context switch
needs to clear

for_enter: N
reservations

, #100

end_for_enter

; 1f Semaphore = @
; dec Semaphore
; try update
; if touched
; sync memory

‘ Critical sec! onj

; 1inc Semaphore
; update

for_enter
end_for_enter:

02020 Une R, 1, The Ausiral.
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, =Sema
, =Count
L #1
for_leave:

, #100

end_for_leave

wait_2:

, [r3]

, wait_2 ; if Semaphore = @

[ N - .
Critical section

for_leave
end_for_leave:

‘page 244 of 758 (chapter 2: “Mutual Exclusion” up to page 253

, #1
for_leave:
, #100

end_for_leave

wait_2:

; 1f Semaphore = @
; dec Semaphore

; try update

; if touched

; sync memory

Critical section

; inc Semaphore
; update

for_leave

end_for_leave

5 (chaper 2: “Mutual Exclusion” up to pag




Count: 0x00000000

Sema: 0x00000001 e = 2 ’—-—_—————“—-—-—-—
, =Sena =Sema Mutual Exclusion Mutual Exclusion

, =Count
#1

, =Count

Any context switch “

lear
ek lof: for_leave:
reservations

, # , #1

end_for_enter _for_leave

Semaphores Semaphores
for_enter:

S : Semaphore : S : Semaphore :

wait_1: : task body Pi is task body Pj is task body Pi is task body Pj is
[r3]
; if Semaphore = @ wait_2 ; if Semaphore = @
) loop loop loop
; dec Semaphore #1 ; dec Semaphore s . . s . P ]
_critical_section_i; -- non_critical_section_j; ------ non_critical_section_i; ------ non_critical_section_
; try update ; try update
, wait_1 ; if touched ) ; if touched
; sync memory ; sync memory

begin begin begin begin

| Critical section Critical section end loop; end loop; end 1oo end loop;
signal_1: —d] e e

o end Pi; end Pj; end Pi; end Pj;

, #1 ; inc Semaphore ; inc Semaphore
[r3] ; try update ; try update R
signal_1 ; if touched signal_2 ; if touched w Works?
; sync memory ; sync memory
for_enter for_leave
end_for_leave

Matual Exclusion” up to page 253) 20 Uwe R. Zimme, The Australian 8 (chapter 2: “Mutual Exclusic

Mutual Exclusion — Mutual Exclusion Mutual Exclusion

Semaphores Semaphores Summary

S1, S2 : Semaphore S1, S2 : Semaphore Mutual Exclusion
task body Pi is task body Pj is task body Pi is task body Pj is .
T begin begin begin * Definition of mutual exclusi
Loop Loop loop loop . . .
- = non_critical_section_j; _critical_section_i; - non_critical_section_j; * Atomic load and atomic store operations

¢ ...some classical errors

non_critical_section

¢ Decker’s algorithm, Peterson’s algorithm
* Bakery algorithm

. . gr
end loop; end loop; end loop; Realistic hardware support
end Pi; end Pj; end Pj; * Atomic test-and-set, Atomic exchanges, Memory cell reservations

¢ Semaphores
* Basic semaphore definition

Vorks too?
¢ Operating systems style semaphores
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Communication & Synchronization

Motivation
Side effects
Operations have side effects which are visible ...

either
w ... locally only
(and protected by runtime-, os-, or hardware-mechanisms)
or
= ... outside the current process

w |f side effects transcend the local process then all
forms of access need to be synchronized.
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Sanity check

Do we need to? - really?

int i; {declare globally to multiple threads}

i+h;

{in one thread}

if 1> n (i=0;)

{in another thread}

What's the worst that can happen?

©2020 Uwe . Zimmer, The Australian National University
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Overview

Synchronization methods

Shared memory based synchronization

Semaphores s C, POSIX — Dijkstra
Conditional critical regions w Edison (experimental)

Monitors = Modula-1, Mesa — Dijkstra, Hoare, ...
Mutexes & conditional variables = POSIX

Synchronized methods w Java, C#, ...

Protected objects ww Ada

Atomic blocks w Chapel, X10

Message based synchronization

. Asynchronous messages
¢ Synchronous messages

w e.g. POSIX, ...
wr e.g. Ada, CHILL, Occam2, ...
* Remote invocation, remote procedure call
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Sanity check
Do we need to? - really?

int i; {declare globally to multiple threads}
4+ if i > n {i=0;}
{in one thread} {in another thread}
w Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic
... yet perhaps it is an 8-bit integer.
== Unaligned manipulations on the main memory will usually not be atomic

... yet perhaps it is a aligned.
w Broken down to a load-operate-store cycle, the operations will usually not be atomic
... yet perhaps the processor supplies atomic operations for the actual case.
= Many schedulers interrupt threads irrespective of shared data operations
... yet perhaps this scheduler is aware of the shared data.
w Local caches might not be coherent
... yet perhaps they are.

©2020 Uwe R. Zimmer, The Ausiralian National University 58 (chapier 3: “Communication & Synchronization” up to page 369

Communication & Synchronization

Sanity check
Do we need to? - really?

int i; {declare globally to multiple threads}
i+t if > {i=0;)

{in one thread} {in another thread}

w Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic

it is an 8-bit integer.

s Unaligned mani I
e Unaligned manj Even if all assumptions hold:
erhaps it is a aligned.

= Broken down tol How to expand this code? t be atomic
OB for the actual case.
= Many SChSdUlerL—n’r{L’H’U‘p’l TIreaus TITESPECVE OT shiared data operations
... yet perhaps this scheduler is aware of the shared data.
= Local caches might not be coherent
yet perhaps they are.
59
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Sanity check

Do we need to? - really?

int i; {declare globally to multiple threads}

i+h;

{in one thread}

if 1> n (i=0;)

{in another thread}

= The chances that such programming errors turn out are usually small and some im-

plicit by chance synchronization in the rest of the system might prevent them at all.

(Many effects stemming from asynchronous memory accesses are interpreted
as (hardware) ‘glitches’, since they are usually rare, yet often disastrous.)

= On assembler level on very simple CPU architectures: synchronization by
employing knowledge about the atomicity of CPU-operations and inter-
rupt structures is nevertheless possible and utilized in practice.

In anything higher than assembler level on single core, predictable p-controllers:

& Measures for synchronization are required!
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Towards synchronization

Condition synchronization by flags
Assumption: word-access atomicity:

i.e. assigning two values (not wider than the size of a ‘word’)
to an aligned memory cell concurrently:

x:=@ | x :=500

will result in either x = @ or x = 500 —and no other value is ever observable

Communication & Synchroniza
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Towards synchronization
Condition synchronization by flags
Assuming further that there is a shared memory area between two processes:

¢ Asetof processes agree on a (word-size) atomic variable operating
as a flag to indicate synchronization conditions:

©2020 Uwe R. Zimmer, The Austalian National U
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Basic synchronization

by Semaphores
Basic definition (Dijkstra 1968)

Assuming the following three conditions on a shared memory cell between processes:
* aset of processes agree on a variable S operating as a

flag to indicate synchronization conditions
* an atomic operation P on S — for ‘passeren’ (Dutch for ‘pass’):

(S): [as soon as S > @ then = S - 1] this is a potentially delaying operation

aka: ‘Wait', ‘Suspend_Until_True’, ‘sem_wait/, ...
* an atomic operation Von S — for ‘vrygeven’ (Dutch for ‘to release’):

V(S): [s S+ 1]

aka ‘Signal’, ‘Set-True’, ‘sem_post’, ...

w then the variable S is called a Semaphore.
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Towards synchronization

Condition synchronization by flags
var Flag : boolean := false;
process P1; process P2;
statement X; statement A;

until

statement Y; statement B;
end P1; end P2;

Sequence of operations: A = B;[X | A] = Y;[X,Y | B]
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Towards synchronization

Condition synchronization by semaphores
var sync : semaphore :=

process P1; process P2;
statement X; statement A;

statement Y; statement B;

end P1; end P2;

Sequence of operations: A = B;[X | A] = Y;[X,Y | B]
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Towards synchronization

Condition synchronization by flags

Assuming further that there is a shared memory area between two processes:

¢ Asetof processes agree on a (word-size) atomic variable operating
as a flag to indicate synchronization conditions:

Memory flag method is ok for simple condition synchronization, but ...
= ... is not suitable for general mutual exclusion in critical sections!

= ... busy-waiting is required to poll the synchronization condition!

1=r More powerful synchronization operations
are required for critical sections

©2020 Uwe R. Zimmer, The Ausiralian National University
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Towards synchronization
Mutual exclusion by semaphores
var mutex : semaphore := 1;

process P1; process P2;
statement X; statement A;

statement Z; statement C;
end P1; end P2;

Sequence of operations:
A=~B-~GCX~Y~>Z[XZ]|ABCJ[ACIXY,Z-[B]|Y]
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Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is
type Suspension_Object is limited private;
procedure Set_True (S : in out Suspension_Object);
procedure Set_False (S : in out Suspension_Object);
function Current_State (s : Suspension_Object) return Boolean;
procedure Suspend_Until_True (S : in out Suspension_Object);

private
not specified by the language

end Ada. Synchranous_Task_Control; ‘ into a single machine instruction.

only one task can be blocked at Suspend_Until_True!
(Program_Error will be raised with a second task trying to suspend itself)

& no queues! i minimal run-time overhead

k. 1, The Ausialian National Universiy age 269 of 758 (chapter 3: “Communication & Synchr
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Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is

type Suspension_Object is li=i+—""Fivate;
. |
" “.O‘herwisg‘_ | out Suspension_Object);
| & for special cases onty | out Suspension_ QbJECf‘ \
\ tun rcle b;

| 7777777,,,wwrnt:5fa’feiiiiii(5 Spens)on ”uJ
T procedure Suspend_Until_Tr (S : in out S¥epeifiorfohie
not speclfled hv the lan \zg
end Ada. Synchronous & L\*r(
only one task can be b\v(ked at Suspend_Until_True!
(Program_Error will be raised with a second task trying to suspend itself)
1 no queues! i minimal run-time overhead
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Towards synchronization

Malicious use of "queueless semaphores"

with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X : Suspension_Object;

task B; task A;
task body B is task body A is
begin begin

Suspend_Until_True (X); Suspend_Until_True (X);

1= Could raise a Program_Error as multiple tasks potentially suspend on the same semaphore
(occurs only with high efficiency semaphores which do not provide process queues)

Communication & Synchroniza
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Towards synchronization Towards synchronization Towards synchronization

Malicious use of "queueless semaphores" Malicious use of "queueless semaphores” Semaphores in POSIX

with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control; with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control; — o Whether the
X, Y : Suspension_Object; X, Y : Suspension_Object; | pshared is actually a Boolean indicating whethe
| semaphore is to be shared between [eE=Es)

task B; task A; task B; task A; —
task body B is task body A is task body B is task body A is
begin begin begin begin int sem_init (sem_t *sem_location, int pshared, unsigned int value);
sem_destroy (sem_t *sem_location);
Suspend_Until_True (Y); Suspend_Until_True (X); Suspend_Until_True (Y); Suspend_Until_True (X); int sem_wait (sem_t *sem_location);
Set_True (X); Set_True (Y); Suspend_Until_True (X); Suspend_Until_True (Y); int sem_trywait (sem_t *sem_location);

sem_timedwait (sem_t xsem_location, const struct timespec *abstime);
end B; end A; end B; end A; .
sem_post (sem_t *sem_location);
sem_getvalue (sem_t *sem_location, int *value);
ww Will result in a deadlock (assuming no other Set_True calls) > Will potentially result in a deadlock (with general semaphores) —

or aProgram_Error in Ada. .
svalue indicates the number of waiting processes as a

ive i i 3 lue is zero
negative integer in case the semajhir(i/i IBEE
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Towards synchronization Towards synchronization Towards synchronization

Semaphores in POSIX Semaphores in Java gince 2000) )
) . Semaphore (int permits, boolean fair) Review of semaphores
sem_t mutex, cond[2]; void (priority_t P)

typedef emun {low, high} priority_t; vo¥d acquire O (D ¢ Semaphores are not bound to any resource or method or region

int waiting; € ait (&mutex); void acquire (int permits) | . ; )

int busy; v void acquireUninterruptibly (int permits) wait | w Compiler has no idea what is supposed to be protected by a semaphore.

' value (&condlhighl, &waiting); boolean tryAcquire O —— ¢ Semaphores are scattered all over the code

void (priority_t P) if (\;valting <o) { boolean tryAcquire (int permits, long timeout, TimeUnit unit)

{ sem_post (&cond[highl); int availablePermits 0] —— ] ) ) ) : X §

em_wait (&mutex); } protected void  reducePermits (int reduction) 1 check and manipulate | s Adding or deleting a single semaphore operation usually stalls a whole system.

if (busy) { else { int drainPermits O L —— —

w Hard to read and highly error-prone.

sem_post (8mutex); N — sen_getvalue (&cond[low], &waiting); void  release 0 T | > Semaphores are generally considered

e N N o % . signal X .
sem_wait (&ond[P1); | Deadlock? | if <\:‘a;‘t{r‘g(;c2:\dﬁlow])' void  release (int permits) | I |nadequate for non-trivial systems.

) A s onkS > .

| Livelock? ‘ protected Collection <Thread> getQueuedThreads () (all concurrent languages and environments offer

e getQueueLength efficient and higher-abstraction synchronization methods)
boolean hasQueuedThreads N N

boolean isFair | > Special (usually close-to-hardware) applications exist.
String toString

>

busy = 1; .

sem_post (&mutex); | Mutual exclusion? | else ¢
L 1

— em st (&mutex);
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Distributed synchronization Distributed synchronization Distributed synchronization

Conditional Critical Regions Conditional Critical Regions Review of Conditional Critical Regions

Basic idea: buffer : buffer_t; ¢ Well formed synchronization blocks and synchronization conditions.
; ¢ Code, data and synchronization primitives are associated (known to compiler and runtime).
« Critical regions are a set of associated code sections in different processes,
which are guaranteed to be executed in mutual exclusion: process producer; process consumer; ¢ All guards need to be re-evaluated, when any conditional critical region is left:

Shared data structures are grouped in named regions loop loop w all involved processes are activated to test their guards

and are tagged as being private resources. . . I
88 . 8P X " . = there is no order in the re-evaluation phase w potential livelocks
Processes are prohibited from entering a critical region,

when another process is active in any associated critical region. « Condition synchronisation inside the critical code sections

- S . requires to leave and re-enter a critical region.
¢ Condition synchronisation is provided by guards: end 1oop; end loop;
* When a process wishes to enter a critical region it evaluates the guard (under mu- end producer; end consumer; ¢ As with semaphores the conditional critical regions are distributed all over the code.

tual exclusion). If the guard evaluates to false, the process is suspended / delayed. e on a larger scale: same problems as with semaphores.

¢ Generally, no access order can be assumed i potential livelocks (The language Edison (Per Brinch Hansen, 1981) uses conditional critical regions for synchroniz-
ation in a multiprocessor environment (each process is associated with exactly one processor).)
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Centralized synchronization

Monitors

(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:

¢ Collect all operations and data-structures shared in critical regions in one place, the monitor.

¢ Formulate all operations as procedures or functions.

* Prohibit access to data-structures, other than by the monitor-procedures and functions.

¢ Assure mutual exclusion of all monitor-procedures and functions.
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Centralized synchronization

Monitors with condition synchronization
buffer;
export append, take;
var BUF : array [ .. ] of integer;
top, base : 0..size-1;
NumberInBuffer : integer;
spaceavailable, itemavailable : condition;
procedure append (I : integer);
begin
if NumberInBuffer = size then
(spaceavailable);
end if;
BUF [top] := I;
NumberInBuffer := NumberInBuffer + 1;
top := (top + 1) mod size;
(itemavailable)
end append; ..

©2020 Uwe R. Zimmer, The Ausiralian National University
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Centralized synchronization

Monitors

buffer;
export append, take;

var (x declare protected vars *)

procedure append (I : integer);

procedure take (var I : integer);

begin
(* initialisation %) »
ends conditional synchronization?

How to implement

unication & Synchr

Communication & Synchronization

Centralized synchronization

Monitors with condition synchronization

procedure take (var I : integer);
begin
if NumberInBuffer = @ then
(itemavailable);

base := (base+1) mod size; The signalling and the
NumberInBuffer := NumberInBuffer-1;
(spaceavailable);
end take;
begin (* initialisation %)
NumberInBuffer
top
base
end;

waiting process are both
active in the monitor!
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Centralized synchronization
Monitors with condition synchronization
(Hoare '74)
Hoare-monitors:

¢ Condition variables are implemented by semaphores (Wait and Signal).
* Queues for tasks suspended on condition variables are realized.
¢ Asuspended task releases its lock on the monitor, enabling another task to enter.

= More efficient evaluation of the guards:
the task leaving the monitor can evaluate all guards and the right tasks can be activated.

w Blocked tasks may be ordered and livelocks prevented.

n & Synchronization” up &
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Centralized synchronization

Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:
¢ Asignal is allowed only as the /ast action of a process before it leaves the monitor.
A signal operation has the side-effect of executing a return statement.
Hoare, Modula-1, POSIX:
a signal operation which unblocks another process has the side-effect of blocking the cur-

rent process; this process will only execute again once the monitor is unlocked again.

A signal operation which unblocks a process does not block the caller,
but the unblocked process must re-gain access to the monitor.
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Centralized synchronization

Monitors in Modula-1

procedure wait (s, r):

delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

procedure send (s):
If a process is waiting for the condition variable s, then the process at the top of
the queue of the highest filled rank is activated (and the caller suspended).

function awaited (s) return integer:
check for waiting processes on s.
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Centralized synchronization

Monitors in Modula-1

resource_control;
allocate, deallocate;
VAR busy : BOOLEAN; free :
PROCEDURE allocate;
BEGIN
IF busy THEN (free) END;
busy := TRUE;
END;
PROCEDURE deallocate;
BEGIN
busy := FALSE;
(free); ------ or: IF (free) THEN (free);
END;
BEGIN
busy := false;
END.
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Centralized synchronization

Monitors in POSIX (‘'C’)

(types and creation)

Synchronization between POSIX-threads:
typedef .. pthread_mutex_t;
typedef .. pthread_mutexattr_t;
typedef .. pthread_cond_t;
typedef .. pthread_condattr_t;

int pthread_mutex_init ( pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);
int pthread_mutex_destroy ( pthread_mutex_t *mutex) ;

int pthread_cond_init ( pthread_cond_t *cond,
const pthread_condattr_t *attr);
int pthread_cond_destroy ( pthread_cond_t *cond) ;
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Centralized synchronization

Monitors in POSIX (‘'C’)

(types and creation) I

Synchronization between POSIX-threads: |
typedef .. pthread_mutex_t;
typedef .. pthread_mutexattr_t; <
typedef .. pthread_cond_t;
typedef .. pthread_condattr_t; < | is locked already by the same thread

Attributes include:

int pthread_mutex_init ( pthrea sharing of mutexes and

semantics for trying to lock a mutex which

const pthreal  condition variables between processes

int pthread_mutex_destroy ( pthreaw priority ceiling

int pthread_cond_init ¢ pthrea¢ clock used for timeouts
const pthreaq
int pthread_cond_destroy ( pthrea(1

©2020 Uwe R. Zimmer, The Ausiralian National University
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Centralized synchronization

Monitors in POSIX (‘'C’)

(operators)

pthread_mutex_lock ( pthread_mutex_t *mutex);
pthread_mutex_trylock  ( pthread_mutex_t *mutex);
pthread_mutex_timedlock ( pthread_mutex_t *mutex,

const struct timespec‘*jhstwme\-, -

pthread_mutex_unlock <—¢———pthread_mutex_t undefined

pthread_cond wait < pthread_cond—r | if called ‘out of order’
read_mutex_t | i.e. mutex is not locked
pthread_cond_timedwait pthread_cond_t | .

pthread_mutex_t #mutex,
const struct timespec *abstime);

pthread_cond_signal [¢ pthread_cond_t *cond);
int pthread_cond_broadcast ( pthread_cond_t *cond);

2020 Uwe R. Zimver, The Ausiralian National University
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Centralized synchronization

Monitors in POSIX (‘C’)

(types and creation)

Synchronization between POSIX-threads:
typedef .. pthread_mutex_t; i . -
typedef .. pthread_mutexattr_t; |
typedef .. pthread_cond_t;
typedef .. pthread_condattr_t; T—

il \
Undefined while locked |

int pthread_mutex_init ( pthread_mutex_t *mutex,
Const pthread_mutexattr_t *attr);
int pthread_mutex_destroy ( pthread_mutex_t *mutex) ;

int pthread_cond_init ( pthread_cond_t *cond,
const pthread_condattr_t *attr);
int pthread_cond_destroy ( pthread_cond_t *cond) ; .

| Undefined while threads are waiting |

©2020 Uwe R. Zimmer, The Austalian National University
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Centralized synchronization

Monitors in POSIX (‘C’)

(operators)

int pthread_mutex_lock pthread_mutex_t *mutex);
int pthread_mutex_trylock X _t *mutex);
int pthread_mutex_timedlock *mutex,
T ime);
) can be called

int pthread_mutex_unlock * anytime

pthread_mutex_t *mutex);

int pthread_cond_wait pthread_cond_t *cond, lic anywhere

pthread_mutex_t *mutex); |

pthread_cond_t = !
*mutex,
*abstime);

int pthread_cond_timedwait

int pthread_cond_signal
int pthread_cond_broadcast

pthread_cond_t *cond);
pthread_cond_t *cond);

« multiple times
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Centralized synchronization

Monitors in POSIX (‘C’)

(operators)

int pthread_mutex_lock ( pthread_mutex_t *mutex);

int pthread_mutex_trylock  ( pthread_mutex_t *mutex);

int pthread_mutex_timedlock ( pthread_mutex_t *mutex,
const struct timespec *abstime);

int pthread_mutex_unlock ( pthread_mutex_t *mutex);

= —
| unblocks ‘at least one’ thread |
.

int pthread_cond_timedwait ( | premreaucomusereongr "
|

int pthread_cond_wait

pth[
const stry unblocks all threads

int pthread_cond_signal pthread_cond_t *cond);
int pthread_cond_broadcast ( pthread_cond_t *cond);

©2020 Uwe R. Zimmer, The Ausiralian National University
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Centralized synchronization

#define BUFF_SIZE 10
typedef struct { pthread ox_t mutex;
pthread_cond_t buffer_not_full;
pthread_cond_t buffer_not_empty;
int count, first, last;
int buf [BUFF_SIZEJ;
} buffer;

int append (int item, buffer *B) { int take (int xitem, buffer *B) {
PTHREAD_MUTEX_L (8B->mutex) ; PTHREAD_MUTEX_LOCK (&B->mutex);
while (B->count == BUFF_SIZE) { while (B->count == 0) {
PTHREAD. IND_WAIT ( PTHREAD. ND_WAIT (

8B->buffer_not_full,
8B->mutex); 8B->mutex);

i i

THREAD_MUTEX K (8B->mutex); HREAD_MUTEX_UNLOCK (8B->mutex);

PTHREAD. ( PTHREAD_COND_SIGNAL (

&B->buffer_not_empty);
return 0; return 9;
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Centralized synchronization

#define BUFF_SIZE 10

typedef struct { pthread_mutex_t mutex;
pthread_cond_t buffer_not_full;
pthread_cond_t buffer_net—emr" |
int count, first, last;‘ need to be called |

int buf [BUFF_SIZE]; with a locked mutex |
} buffer; |

int append (int item, buffer *B int take (int *item, buffer *B) {

PTHREAD_MUTEX_LOCK (8B->mutex);
hila fms e

PTHREAD_COND_WA ‘ better to be called

&B->buffer_not_full, | after unlocking all mutexes
&B->mutex); (as it is itself potentially blocking)
———————
PTHREAD_MUTEX_UNLOCK (&B->mutex) ;

HREAD_COND_SIGNAL (
&B->buffer_not_empty);

return 0; return 0;
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Centralized synchronization
Monitors in C#

using System;
using System.Threading;
static long data_to_protect = 0;

static void Reader() static void Writer()

{try { {try {

Monitor.Enter (data_to_protect);
Monitor.Wait (data_to_protect);
.. read out protected data

Monitor.Enter (data_to_protect);
.. Write protected data
Monitor.Pulse (data_to_protect);

8B->buffer_not_empty,

8B->buffer_not_full);
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Centralized synchronization

Monitors in Visual C++

using namespace System;
using namespace System: :Threading

private: integer data_to_protect;

void Reader() void Writer()
{try { {try {

Monitor::Enter (data_to_protect); Monitor::Enter (data_to_protect);

Monitor::Wait (data_to_protect); .. write protected data

22020 Usve R. Zimmer, The Australian National

} }
finally { finally {
Monitor.Exit (data_to_protect); Monitor.Exit
} }
}

(data_to_protect);
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. read out protected data Monitor::Pulse (data_to_protect);

¥
finally {
Monitor::Exit (data_to_protect);

©2020 Uwe R. Zimmer,

¥
finally {
Monitor.Exit (data_to_protect);
3
3
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Centralized synchronization

Monitors in Visual Basic

Imports System
Imports System.Threading

Private Dim data_to_protect As Integer = @

Public Sub Reader Public Sub Writer
Try Try
Monitor.Enter (data_to_protect) Monitor.Enter (data_to_protect)
Monitor.Wait (data_to_protect) . write protected data
.. read out protected data Monitor.Pulse (data_to_protect)
Finally Finally
Monitor.Exit (data_to_protect) Monitor.Exit (data_to_protect)
End Try End Try
End Sub End Sub
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Centralized synchronization

Monitors in Java

(by means of language primitives)
Considerations:

. Synchronized methods and code blocks:
In order to implement a monitor a/l methods in an object need to be synchronized.
wr any other standard method can break a Java monitor and enter at any time.
Methods outside the monitor-object can synchronize at this object.

w it is impossible to analyse a Java monitor locally, since lock ac-
cesses can exist all over the system.

Static data is shared between all objects of a class.

1 access to static data need to be synchronized with all objects of a class.

Synchronize either in static synchronized blocks: synchronized (this.getClass()) {.}
or in static methods: public synchronized static <method> {..}
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Centralized synchronization

Monitors in Java

Monitor mon = new Monitor();
Monitor.Condition Condvar = mon.new Condition();

public void reader public void writer

throws InterruptedException { throws InterruptedException {

mon.enter(); mon.enter();
Condvar.await(); .. write protected data
. read out protected data Condvar.signal();
mon. leave(); mon. leave();

3 b

—

... the Java library monitor
connects data or condition
variables to the monitor
by convention only!

unication & Synchr
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Centralized synchronization

Monitors in Java
(by means of language primitives)
Considerations:

. Notification methods: wait, notify, and notifyAll
wait suspends the thread and releases the local lock only
w nested wait-calls will keep all enclosing locks.
notify and notifyAll do not release the lock!
= methods, which are activated via notification need to wait for lock-access.
Java does not require any specific release order (like a queue) for wait-suspended threads
= livelocks are not prevented at this level (in opposition to RT-Java).
There are no explicit conditional variables associated with the monitor or data.

w notified threads need to wait for the lock to be released
and to re-evaluate its entry condition.
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Centralized synchronization

Monitors in Java

(by means of language primitives)

Java provides two mechanisms to construct a monitors-like structure:

¢ Synchronized methods and code blocks:
all methods and code blocks which are using the synchronized
tag are mutually exclusive with respect to the addressed class.

* Notification methods:
wait, notify, and notifyAll can be used only in
synchronized regions and are waking any or all threads,
which are waiting in the same synchronized object.

Communication & Synchronization

Centralized synchronization

Monitors in Java
(by means of language primitives)
Standard monitor solution:

declare the monitored data-structures private to the monitor object (non-static).
introduce a class ConditionVariable:

public class ConditionVariable {

public boolean wantToSleep = false;

3
introduce synchronization-scopes in monitor-methods:
= synchronize on the adequate conditional variables first and
= synchronize on the adequate monitor-object second.
make sure that all methods in the monitor are implementing the correct synchronizations.
make sure that no other method in the whole system is
synchronizing on or interfering with this monitor-object in any way w by convention.
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Centralized synchronization

Monitors in Java

(multiple-readers-one-writer-example: usage of external conditional variables)

public class ReadersWriters {
private int readers =
private int waitingReaders
private int waitingWriters
private boolean writing false;
ConditionVariable bRead = new ConditionVariable ();
ConditionVariable O rite = new ConditionVariable ();
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Centralized synchronization

Monitors in Java

(multiple-readers-one-writer-example: usage of external conditional variables)

public void StartWrite () throws InterruptedException {
synchronized (OkToWrite) {
synchronized {
if (writing | readers > @) {
waitingWriters++;
OkToWrite.wantToS
} else {
writing = true;
kToWrite.wantToS

leep = true;
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Centralized synchronization

Monitors in Java

(multiple-readers-one-writer-example: usage of external conditional variables)

public void StopWrite () {
synchronized (OkToRe
synchronized (0
synchronized
if (waitingWriters > @) {
waitingWriters--;
OkToWrite.notify (); // wakeup one writer
} else {
writing = false;
OkToRead.notifyAll (); // wakeup all readers
readers = waitingReaders;
waitingReaders = 0;
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Centralized synchronization

Monitors in Java

(multiple-readers-one-writer-example: usage of external conditional variables)

public void StartRead () throws InterruptedException {
synchronized (OkToRead) {
synchronized {
if (writing | waitingWriters > @) {
waitingReaders+
OkToRead.wantTo!
3} else {
readers++;
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Object-orientation and synchronization

Since mutual exclusion, notification, and condition synchronization schemes need to be de-
signed and analyzed considering the implementation of all involved methods and guards:

w New methods cannot be added without re-evaluating the class!
Re-usage concepts of object-oriented programming do not translate to
synchronized classes (e.g. monitors) and thus need to be considered carefully.

w The parent class might need to be adapted
in order to suit the global synchronization scheme.

= Inheritance anomaly (Matsuoka & Yonezawa ‘93)

Methods to design and analyse expandible synchronized systems exist, yet they
are complex and not offered in any concurrent programming language.
Alternatively, inheritance can be banned in the context of synchronization (e.g. Ada).
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Centralized synchronization

Monitors in Java

(multiple-readers-one-writer-example: usage of external conditional variables)

public void StopRead () {
synchronized (OkToWrite)
synchronized
readers--;
if (readers == @ & waitingWriters > @) {
waitingWriters--;

OkToWrite.no
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Centralized synchronization
Monitors in POSIX, Visual C++, C#, Visual Basic & Java

i All provide lower-level primitives for the construction of monitors.
== All rely on convention rather than compiler checks.

s Visual C++, C+ & Visual Basic offer
data-encapsulation and connection to the monitor.

= Java offers data-encapsulation (yet not with respect to a monitor).

1 POSIX (being a collection of library calls)
does not provide any data-encapsulation by itself.

e Extreme care must be taken when employing
object-oriented programming and synchronization (incl. monitors)
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Centralized synchronization

Monitors in Java

Per Brinch Hansen (1938-2007) in 1999:

Java’s most serious mistake was the decision to use the sequential
part of the language to implement the run-time support for its paral-
lel features. It strikes me as absurd to write a compiler for the sequen-
tial language concepts only and then attempt to skip the much more
difficult task of implementing a secure parallel notation. This wish-
ful thinking is part of Java’s unfortunate inheritance of the insecure
C language and its primitive, error-prone library of threads methods.
"Per Brinch Hansen is one of a handful of computer pioneers who was responsible for advan-

cing both operating systems development and concurrent programming from ad hoc tech-
niques to systematic engineering disciplines.” (from his IEEE 2002 Computer Pioneer Award)
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Centralized synchronization
Nested monitor calls

Assuming a thread in a monitor is calling an operation in
another monitor and is suspended at a conditional variable there:
w the called monitor is aware of the suspension and allows other threads to enter.
= the calling monitor is possibly not aware of the suspension and keeps its lock!
w the unjustified locked calling monitor reduces the

system performance and leads to potential deadlocks.
Suggestions to solve this situation:

* Maintain the lock anyway: e.g. POSIX, Java
¢ Prohibit nested monitor calls: e.g. Modula-1

¢ Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada
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Centralized synchronization

Criticism of monitors

¢ Mutual exclusion is solved elegantly and safely.

e Conditional synchronization is on the level of semaphores still
w all criticism about semaphores applies inside the monitors

i Mixture of low-level and high-level synchronization constructs.
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Synchronization by protected objects

Combine
the encapsulation feature of monitors
with
the coordinated entries of conditional critical regions
to:
w Protected objects

All controlled data and operations are encapsulated.

Operations are mutual exclusive (with exceptions for read-only operations).
Guards (predicates) are syntactically attached to entries.

No protected data is accessible (other than by the defined operations).

Fairness inside operations is guaranteed by queuing (according to their priorities).
Fairness across all operations is guaranteed by the "internal progress first" rule.
Re-blocking provided by re-queuing to entries (no internal condition variables).
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Centralized synchronization

Synchronization by protected objects

(Simultaneous read-access)

Some read-only operations do not need to be mutually exclusive:
protected type Shared_Data (Initial : Data_Item) is
function Read return Data_Item;
procedure Write (New_Value : Data_Item);

private
The_Data : Data_Item := Initial;
end Shared_Data_Item;

 protected functions can have ‘in’ parameters only
and are not allowed to alter the private data (enforced by the compiler).

w protected functions allow simultaneous access (but mutual exclusive with other operations).
... there is no defined priority between functions and other protected operations in Ada.
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Centralized synchronization

Synchronization by protected objects
(Condition synchronization: entries & barriers)
Condition synchronization is realized in the form of protected procedures
combined with boolean predicates (barriers): i called entries in Ada:
Buffer_Size : constant Integer := 10;
type  Index  is mod Buffer_Size;
subtype Count is Natural range @ .. Buffer_Size;
type  Buffer_T is array (Index) of Data_Item;
protected type Bounded_Buffer is
entry Get (Item : out Data_Item);
entry Put (Item Data_Item)
private
First : Index := Index’First;
Last : Index := Index’Last;
Num : Count := 0Q;
Buffer : Buffer_T;
end Bounded_Buffer;
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Centralized synchronization

Synchronization by protected objects
(Withdrawing entry calls)

Buffer : Bounded_Buffer;
select select

or then abort
delay 10 -- meanwhile try something else
-- do something after 10 s. end select;
end select;
select
select delay
then abort
else H
-- do something else -- try to enter for 10 s.
end select; end selec
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Centralized synchronization

Synchronization by protected objects

(Condition synchronization: entries & barriers)

protected body Bounded_Buffer is
entry Get (Item : out Data_Item) when Num
begin
Item := Buffer (First);
First First + 1;
Num  := Num - 1;
end Get;
entry Put (Item : Data_Item) when Num < Buff
begin
Last := Last + 1;
Buffer (Last) := Item;
Num i= Num + 1;
end Put;
end Bounded_Buffer;
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Synchronization by protected objects

(Barrier evaluation)
Barrier in protected objects need to be evaluated only on two occasions:

on creating a protected object,
all barrier are evaluated according to the initial values of the internal, protected data.

on leaving a protected procedure or entry,
all potentially altered barriers are re-evaluated.
Alternatively an implementation may choose to evaluate barriers on those two occasions:
on calling a protected entry,
the one associated barrier is evaluated.
on leaving a protected procedure or entry,

all potentially altered barriers with tasks queued up on them are re-evaluated.

Barriers are not evaluated while inside a protected object or on leaving a protected function.
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Synchronization by protected objects
(Withdrawing entry calls)

Buffer : Bounded_Buffer;
select
or

delay
-- do something after 10 s.

end select;

select

else
-- do something else
end select;
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Synchronization by protected objects

(Operations on entry queues)

The count attribute indicates the number of tasks waiting at a specific queue:

protected Block_Five is protected body Block_Five is
entry Proceed; entry Proceed
private when >5
Release : Boolean := or Release is
end Block_Five; begin
Release :=
end Proceed;

end Block_Five;

we R. Zimmer, The Ausiralian National University
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Synchronization by protected objects

(Operations on entry queues)
The count attribute indicates the number of tasks waiting at a specific queue:

protected type Broadcast is protected body Broadcast is

entry Receive (M: out Message); entry Receive (M: out Message)
procedure Send (M: Message); when ved is

private begin
New_Message : Message; M := New_Message
Arrived : Boolean := False; Arrived : > 0;

end Broadcast; end Proceed;

procedure Send (M: Message) is
begin
New_Message :
Arrived B > 0;
end Send;
end Broadcast;
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Synchronization by protected objects
(Entry families, requeue & private entries)
Additional, essential primitives for concurrent control flows:

e Entry families:
A protected entry declaration can contain
adiscrete subtype selector, which can be evaluated by the barrier (other parameters
cannot be evaluated by barriers) and implements an array of protected entries.

Requeue facility:

Protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private

entries. The current protected operation is finished and the lock on the object is released.
‘Internal progress first’-rule: external tasks are only considered for queuing
on barriers once no internally requeued task can be progressed any further!
* Private entries:

Protected entries which are not accessible from outside the protected

object, but can be employed as destinations for requeue operations.
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Centralized synchronization

Synchronization by protected objects

(Entry families)

package Modes is package body Modes is
type Mode_T is protected body Mode_Gate is
(Takeoff, Ascent, Cruising, procedure Set_Mode
Descent, Landing); (Mode: Mode_T) is
protected Mode_Gate is begin
procedure Set_Mode (Mode: Mode_T); Current_Mode := Mode;
entry (Mode_T); end Set_Mode;
private entry
Current_Mode : Mode_Type := Takeoff; (for Mode in Mode_T)
end Mode_Gate; when Current_Mode = Mode is
end Modes; begin null;
end Wait_For_Mode;
end Mode_Gate;
end Modes;
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Centralized synchronization

Synchronization by protected objects

(Entry families, requeue & private entries)
How to moderate the flow of incoming calls to a busy server farm?

type Urgency is (urgent, not_so_urgent);
type Server_Farm is (primary, secondary);
protected Pre_Filter is

entry Reception (U : Urgency);
private

entry Server (Server_Farm) (U : Urgency);
end Pre_Filter;
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Shared memory based synchronization

General

Monitors
Criteria:
e Levels of abstraction
uards (bariors)
Centralized versus distributed

Support for automated (compiler based)
consistency and correctness validation

Error sensitivity
Predictability
Efficiency
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Centralized synchronization

Synchronization by protected objects

(Entry families, requeue & private entries)
protected body Pre_Filter is
entry Reception (U : Urgency)
when Ser (primary)’count = @ or else S
begin
If U = urgent and then e primary)’count = @ then
requeue Server (primary);
else
requeue Server (secondary);
end if;
end Reception;
entry Server (for S in Ser ) (U : Urgency) when True is
begin null; -- might try something even more useful
end Server;
end Pre_Filter;
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Shared memory based synchronization

POSIX

* All low level constructs available

* Connection with the actual data-struc-
tures by means of convention only

* Extremely error-prone

* Degree of non-determinism intro-
duced by the ‘release some’ semantic

e ‘C’based
* Portable
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Synchronization by protected objects

(Restrictions for protected operations)
All code inside a protected procedure, function or entry is bound to non-blocking operations.

Thus the following operations are prohibited:

entry call statements

delay statements

task creations or activations

select statements

accept statements

... as well as calls to sub-programs which contain any of the above

i The requeue facility allows for a

potentially blocking operation,
and releases the current lock!
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Shared memory based synchronization

JEVE] Moriors

Mutual exclusion available.

General notification feature (not .

connected to other locks, hence Guards (barriers)
not a conditional variable)

Universal object orientation makes

local analysis hard or even impossible

Mixture of

high-level object oriented features and

low level concurrency primitives
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Shared memory based synchronization

C#, Visual C++, Visual Basic Moriors

Mutual exclusion via
library calls (convention)
Data is associated with the
locks to protect it

Data si
oncay

Condition variables related to

the data protection locks

Mixture of

high-level object oriented features and
low level concurrency primitives
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Shared memory based synchronization

Protected objects

C++14

Mutual exclusion in scopes

Data is not strictly associated

with the locks to protect it

Condition variables related to o
the mutual exclusion locks (mutual exclusion)
Set of essential primitives without combin-

ing them in a syntactically strict form (yet?)

Communication & Synchronization

Shared memory based synchronization

Protected objects

Rust s

Mutual exclusion in scopes

Data is strictly associated e .
with locks to protect it encapsulation Guards (barirs)
Condition variables related to

the mutual exclusion locks Synchronized

Combined with the message passing Rl o~chsEy]

semantics already a power set of tools.

Concurrency features migrated

to a standard library.
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Shared memory based synchronization Shared memory based synchronization High Performance Computing
Synchronization in large scale concurrency

High Performance Computing (HPC) emphasizes on
p Ada keeping as many CPU nodes busy as possible:

Monitors
. * High-level synchronization support i i se res S
Modula-‘l, Chll/, Parallel Pasca/, wi?ich smlecyto ol m_Pf[; & Avoid contention on sparse resources.

SHEES 8e size projects. w Data is assigned to individual processes rather than processes synchronizing on data.
. Fu{l implementation of the s (% ¢ f:g Cozgrillﬁglsssfilgck analysis w Data integrity is achieved by keeping the CPU nodes in approximate “lock-step”,

Dijkstra / Hoare monitor concept P Y yet there is still a need to re-sync concurrent entities.
. * Low-Level semaphores for very special cases| r

The term monitor appears in many other metho ( ] Traditionally this has been implemented using the
concurrent languages, yet it is usually not s Ada has still Message Passing Interface (MPI) while implementing separate address spaces.

associated with an actual language primitive. . .
no mainstream competitor

in the field of explicit concurrency.
(2018)

w Current approaches employ partitioned address spaces,
i.e. memory spaces can overlap and be re-assigned. i Chapel, Fortress, X10.

& Not all algorithms break down into independent computation slices and so there is
aneed for memory integrity mechanisms in shared/partitioned address spaces.
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Current developments Current developments Synchronization

Atomic operations in X10 Synchronization in Chapel Message-based synchronization

X10 offers only atomic blocks in unconditional and conditional form. Chapel offers a variety of concurrent primitives:

¢ Unconditional atomic blocks are guaranteed to be non-blocking, * Parallel operations on data (e.g. concurrent array operations)
which means that they cannot be nested and need to be implemented using roll-backs. « Parallel statements (incl. parallel, i.e. unrolled ‘loops’) Synchronization model Message structure
Conditional atomic blocks can also be used as a pure notification system

* Parallelism can also be explicitly limited by serializing statements e Asynchron o arbitrary
(similar to the Java notify method). B Y Y 8 synchronous arbitrary

) . * Atomic blocks for the purpose to construct atomic transactions * Synchronous * restricted to ‘basic’ types
Parallel statements (incl. parallel, i.e. unrolled ‘loops’). . . - . . v ey
* Memory integrity needs to be programmed by means of synchronization statements ¢ Remote invocation * restricted to un-typed communications

(waiting for one or multiple control flows to complete)
The programmer does not specify the scope of the locks (atomic blocks) and/or atomic blocks Addressing (name space)
but they are managed by the compiler/runtime environment.

Shared variables (and their access mechanisms) are not defined.

Further Chapel semantics are still forthcoming ... so there is still hope for a ¢ direct communication

w Code analysis algorithms are required in order to provide efficiently, stronger shared memory synchronization / memory integrity construct. e ——-—

otherwise the runtime environment needs to associate every atomic block with a global lock.
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Message-based synchronization Message-based synchronization Message-based synchronization

Message protocols Message protocols Message protocols

Synchronous message Synchronous message [ Asynchronous message
(sender waiting) (receiver waiting) - |
) Neither the sender nor the receiver is blocked: R e

Delay the sender process until Delay the receiver process until

receive |

* Message is not transferred directly

* Receiver becomes available « Sender becomes available * Abuffer is required to store the messages

* Receiver acknowledges reception « Sender concludes transmission * Policy required for buffer sizes and

buffer overflow situations

asyncrondiis asyncronous asyncronous
time syncronous : . syncronous. : e oo
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Message-based synchronization Message-based synchronization Message-based synchronization

Message protocols Message protocols Message protocols

Asynchronous message l Synchronous message Remote invocation I
(simulated by synchronous messages) send I bl (simulated by asynchronous messages) ‘ |

send receive invocation

- Delay sender or receiver
Introducing an intermediate process: Introducing two asynchronous messages: e . until the first rendezvous point
. N Pass parameters
¢ Intermediate needs to be ac- Both processes voluntarily suspend them- -

cepting messages at all times. selves until the transaction is complete. Keep sender blocked while
receiver executes the local procedure

remote
invocation

¢ Intermediate also needs to send As no immediate communication takes place,
out messages on request. the processes are never actually synchronized.

w While processes are blocked in the sense of The sender (but not the receiver) process
synchronous message passing, they are not ac- A 1 A knows that the transaction is complete. : syncronous. : : syncronous |
tually delayed as the intermediate is always ready.

Pass results

asyncronous Release both processes out of the rendezvous asyncronous |
_
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Message-based synchronization Message-based synchronization Message-based synchronization

Message protocols Message protocols Message protocols

Remote invocation Remote invocation (no results) l Remote invocation (no results) l
(simulated by asynchronous messages) (simulated by asynchronous messages)

e Shorter form of remote invocation which does o invocation I
¢ Simulate two synchronous messages g send not wait for results to be passed back. il ¢ Simulate one synchronous message g
* Processes are never actually synchronized o Still both processes are actually * Processes are never actually synchronized
send synchronized at the time of the invocation.

receive

receive

=
send

asyncronous asyncronous
— [Sponde ]
time SRcrong i i syncronous i time syncronous.
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Message-based synchronization Message-based synchronization Message-based synchronization

Addressing (name space)
Synchronous vs. asynchronous communications Synchronous vs. asynchronous communications

Purpose ‘synchronization’: wr synchronous messages / remote invocations Purpose ‘synchronization’: & synchronous messages / remote invocations

’ . < messages i 7 g Direct versus indirect:
Purpose ‘last message(s) only”: = asynchronous messages Purpose ‘last message(s) only”: & asynchronous messages

send <message> to  <process-name>

w Synchronous message passing in distributed systems requires hardware support. = Synchronous message passing in distributed systems requires hardware support. wait for <message> from <process-name>
send <message> to  <mailbox>

= Asynchronous message passing requires the usage of buffers and overflow policies. = Asynchronous message passing requires the usage of buffers and overflow policies. .
Y ge p g req 8 p Y ge p g req 8 P wait for <message> from <mailbox>

Can both communication modes emulate each other? Can both communication modes emulate each other?

Asymmetrical addressing:
send <message> to ..
wait for <message>

Synchronous communications are emulated by a combination of asynchronous messages
in some systems (not identical with hardware supported synchronous communication).
Asynchronous communications can be emulated in

synchronized message passing systems by introducing a ‘buffer-task’

(de-coupling sender and receiver as well as allowing for broadcasts).

w Client-server paradigm
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Communication & Synchronization

Message-based synchronization Message-based synchronization Message-based synchronization

Addressing (name space) Message structure Message structure (Ada)

package Ada.Streams is
pragma Pure (Streams);
o 3 X d dl X type Root_Stream_Type is abstract tagged limited private;
) ) ) * Communication system is often outside the typed language environment. type Stream_Element is mod implementation-defined;
Connections Functionality P a o B A A a
Most communication systems are handling streams (packets) of a basic element type only. type Stream_Element_Offset is range implementation-defined;
one-to-one buffer, queue, synchronization subtype Stream_Element_Count is
Stream_Element_Offset range 0..Stream_Element_Offset’Last;

Communication medium:
* Machine dependent representations need to be taken care of in a distributed environment.

one-to-man multicast . . 9 :
i w Conversion routines for data-structures other then the basic element type are supplied ...
one-to-all broadcast type Stream_Element_Array is
o ... manually (POSIX, C) array (Stream_Element_Offset range <>) of Stream_Element;
many-to-one local server, synchronization o N .
e ... semi-automatic (CORBA) procedure Read (..) is abstract;
all-to-one general server, synchronization ... automatic (compiler-generated) and typed-persistent (Ada, CHILL, Occam2) procedure Write (.) is abstract;
many-to-many general network- or bus-system private
.. == not specified by the language
end Ada.Streams;
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Message-based synchronization Message-based synchronization Message-based synchronization

Message structure (Ada) Message-passing systems examples: Message-passing systems examples:

Reading and writing values of any subtype S of a specific type T to a Stream:
procedure S’Writ (Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T);
procedure S’Class e (Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T’Class);
procedure S’Read (Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : out T);

“message queues”:
w ordered indirect [asymmetrical | symmetrical] asynchronous
byte-level many-to-many message passing
: “message passing”:
wr ordered [direct | indirect] [asymmetrical | symmetrical] asynchronous memory-block-
level [one-to-one | one-to-many | many-to-one | many-to-many] message passing
) " i .
procedure S’Class’Read (Stream : access Ada.Streams.Root_Stream_Type’Class; (it s.gn?ls - o o '
X ) = ordered indirect ical | ical] [syncl | asynchronous]
Item : out T’Class) Y Y y
ed [many-to-man -to-one] message passin

one-to-one
many-to-one

synchronous
| R R many-to-many

method
message queues
message passing
message passing
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contents
byte-stream
memory-blocks ¢
basic types

R R R asymmetrical
R X N\ asynchronous

R N N symmetrical
AN

AN

Reading and writing values, bounds and discriminants

of any subtype S of a specific type T to a Stream:
procedure S’Outpu (Stream : access Ada.Streams.Root_Stream_Type’Class; -
Item : in T);
function S$’Input (Stream : access Ada.Streams.Root_Stream_Type’Class) return T; -- .
Java: 1 no message passi Java: & no message passing system defined
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Message-based synchronization Message-based synchronization Message-based synchronization

Message-based synchronization in Occam2 Message-based synchronization in Occam2 Message-based synchronization in CHILL

Communication is ensured by means of a‘channel’, which: Communication is ensured by means of a ‘channel’, which: CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.

¢ can be used by one writer and one reader process only * can be used by one writer and one reader process only
e and is synchronous: « and is synchronous: ‘7 — N ) The CHILL language development was started in 1973 and standardized in 1979.

CHAN OF INT SensorChannel: CHAN OF INT SensorChannel:

PAR PAR
INT reading: INT reading: ALT PAR SEQ PRI
SEQ i = @ FOR 1000 SEQ i = 0 FOR 1000 ANY CHAN OF

SEQ concurrent entities are SEQ ‘ DATA TYPE RECORD OFFSETOF PACKED
- generate reading synchronized at these points | -~ generate reading BOOL BYTE INT REAL
SensorChannel ! reading | Sensc nnel ! reac CASE IF ELSE FOR FROM WHILE

Essential Occam2 keywords ‘ w strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;

receive case
send SensorBuffer (reading); (SensorBuffer in data) : ..
esac;

INT data: —— INT data: FUNCTION RESULT PROC IS signal SensorChannel = (int) to consumertype;
SEQ i = @ FOR 1000 SEQ i = @ FOR 1000 PROCESSOR PROTOCOL TIMER

SEQ SEQ SKIP STOP VALOF send SensorChannel (reading) receive case
e to consumer (SensorChannel in data): ..
esac;
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1, The Ausiralian National Universiy 58 (chapier 3: “Communication & Synchronization” up to page 369 22020 Usve R. Zimmer, The Ausiralian National University |




|
Communication & Synchronization

Message-based synchronization
Message-based synchronization in CHILL

CHILL is the ‘CCITT High Level Language’,

where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.

The CHILL language development was started in 1973 and standardized in 1979.

w strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;

receive case

send SensorBuffer &e-adrné asinchmnous —>(SensorBuffer in data) : ..

esac;
signal SensorChannel = (int) to consumertype;

send SensorChannel (reading) receive case

to consumer ——1_synchronous %H(Sensorchannel in data): ..
esac;
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Message-based synchronization

Message-based synchronization in Ada

(Extended rendezvous)

<entry_name> [(index)] <parameters>
- waiting for synchronization
waiting for synchronization
- waiting for synchronization
waiting for synchronization
synchronized ————— —> accept <entry_name> [(index)]
<parameter_profile> do
invocation
blocked invocation
blocked - invocation

= return results ————— —> end <entry_name>;

time time
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Message-based synchronization

Message-based synchronization in Ada

Ada supports remote invocations ((extended) rendezvous) in form of:

* entry points in tasks

o full set of parameter profiles supported

If the local and the remote task are on different architectures,
or if an intermediate communication system is employed then:

w parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

* Both tasks are synchronized at the beginning of the remote invocation (s ‘rendezvous’)
¢ The calling task if blocked until the remote routine is completed (= ‘extended rendezvous’)
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Message-based synchronization

Message-based synchronization in Ada

(Rendezvous)

accept <entry_name> [(index)]
<parameter_profile>;
- waiting for synchronization
- waiting for synchronization

------ waiting for synchronization
<entry_name> [(index)] <parameters> synchronized ﬁ—>

time time
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Message-based synchronization

Message-based synchronization in Ada

(Rendezvous)

<entry_name> [(index)] <parameters>
- waiting for synchronization
waiting for synchronization
waiting for synchronization
waiting for synchronization
_synchronized | ~—> accept <entry_name> [(index)]
<parameter_profile>;

time
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Message-based synchronization

Message-based synchronization in Ada

(Extended rendezvous)

accept <entry_name> [(index)]
<parameter_profile>;
waiting for synchronization
waiting for synchronization
waiting for synchronization
<entry_name> [(index)] <parameters> synchronized |—>

-- remote invocation

blocked -- remote invocation

blocked invocation

blocked -- remote invocation

-———————— return results )-——» end <entry_name>;

time time

© 2020 Uwe R. Zimmer, The Ausiralian National University
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Message-based synchronization

Message-based synchronization in Ada

Some things to consider for task-entries:

In contrast to protected-object-entries, task-entry bodies can call other blocking operations.

Accept statements can be nested (but need to be different).

w helpful e.g. to synchronize more than two tasks.

Accept statements can have a dedicated exception handler (like any other code-block).
Exceptions, which are not handled during the rendezvous

phase are propagated to all involved tasks.

Parameters cannot be direct ‘access’ parameters, but can be access-types.

“count on task-entries is defined,

but is only accessible from inside the tasks which owns the entry.

Entry families (arrays of entries) are supported.
Private entries (accessible for internal tasks) are supported.
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Summary

Communication & Synchronization

* Shared memory based synchronization
Flags, condition variables, semaphores,
conditional critical regions, monitors, protected objects.
Guard evaluation times, nested monitor calls, deadlocks,
simultaneous reading, queue management.
Synchronization and object orientation, blocking operations and re-queuing.

Message based synchronization

¢ Synchronization models
* Addressing modes

. Message structures

¢ Examples

9 of 758 (chaper 3: “Comm
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Non-determinism
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Non-determinism

Non-determinism by design

Dijkstra’s guarded commands (non-deterministic case statements):
if x<=y->m X Selection is no
Q x>y->m
fi
= The programmer needs to design the alternatives as ‘parallel’ options:
all cases need to be covered and overlapping conditions need to lead to the same result
All true case statements in any language are potentially concurrent and non-deterministic.
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Non-determinism by design

Dijkstra’s guarded commands (non-deterministic case statements):
if x<=y->m ! tion is non
Q x>y->n
fi
= The programmer needs to design the alternatives as ‘parallel’ options:
all cases need to be covered and overlapping conditions need to lead to the same result
All true case statements in any language are potentially concurrent and non-deterministic.

Numerical non-determinism in concurrent statements (Chapel):

writeln (* reduce [i in 1..10] exp (i));
writeln (+ reduce [i in 1..1000000] i ** 2.0);

Results may be non-deterministc
depending on numeric type

> The programmer needs to understand the
numerical implications of out-of-order expressions.
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Non-determinism

[

Non-determinism by design:
A property of a computation which
may have more than one result.
Non-determinism by interaction:

A property of the operation environment which may
lead to different sequences of (concurrent) stimuli.
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Non-determinism by design

Motivation for non-deterministic design

By explicitly leaving the sequence of evaluation or execution undetermined:

w The compiler / runtime environment can directly (i.e. without any analy-
sis) translate the source code into a concurrent implementation.

w The implementation gains potentially significantly in performance

w The programmer does not need to handle any of the details of a concur-
rent implementation (access locks, messages, synchronizations, ...)

A programming language which allows for
those formulations is required!

w current language support: Ada, X10, Chapel, Fortress, Haskell, OCaml, ...
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Non-determinism

Non-determinism by interaction

Selective waiting in Occam?2

ALT

Guard1
Process1

Guard2
Process2

¢ Guards are referring to boolean expressions and/or channel input operations.

¢ The boolean expressions are local expressions, i.e. if none of them evaluates to true
at the time of the evaluation of the ALT-statement, then the process is stopped.

 If all triggered channel input operations evaluate to false, the process is sus-
pended until further activity on one of the named channels.

¢ Any Occam?2 process can be employed in the ALT-statement

¢ The ALT-statement is non-deterministic (there is also a deterministic version: PRI ALT).
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Non-determinism by interaction

Selective waiting in Occam?2

& Append ? Buffer [Top]
SEQ
NumberInBuffer := NumberInBuffer + 1
Top := (Top + 1) REM Size
& Request ? AN
SEQ
ake ! Buffe Base
NumberInBuffer := NumberInBuffer - 1
Base := (Base + 1) REM Size

* Synchronization on input-channels only (channels are directed in Occam2):
& to initiate the sending of data (Take ! Buffer [Basel),
arequest need to be made first which triggers the condition: (Request ? ANY)
CSP (Communicating Sequential Processes, Hoare 1978)
also supports non-deterministic selective waiting
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Non-determinism by interaction

Select function in POSIX

t pselect(int n, fd_set *readfds, fd_set swritefds, fd_set
const struct timespec *ntimeout, sigset_t

n being one more than the maximum of any file descriptor in any of the sets.
after return the sets will have been reduced to the channels which have been triggered.
the return value is used as success / failure indicator.

The POSIX select function implements parts of general selective waiting:
* pselect returns if one or multiple /0O channels have been triggered or an error occured.

— Branching into individual code sections is not provided.
— Guards are not provided.
After return it is required that the following code

implements a sequential testing of all channels in the sets.
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Selective Synchronization
Message-based selective synchronization in Ada

Forms of selective waiting:

select_statement ::= |
conditional_entry_call |
timed_entry_call |
asynchronous_select

... underlying concept: Dijkstra’s guarded commands

implements ...
.. wait for more than a single rendezvous at any one time
time-out if no rendezvous is forthcoming within a specified time
.. withdraw its offer to communicate if no rendezvous is available immediately
.. terminate if no clients can possibly call its entries

©2020 Uwe R. Zimmer, The Austalian National University 1758 (chapter 4: “Non-determinism” up.
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Selective Synchronization

Basic forms of selective synchronization

(select-guarded-accept)

e Ifall conditions are ‘true’
w identical to the previous form.

select If some condition evaluate to ‘true’
when <condition> => accept .. = the accept statement after those condi-
or tions are treated like in the previous form.

< ition> => . 2 0
LTI AT accept If all conditions evaluate to ‘false

wr Program_Error is raised.
Hence it is important that the set of con-
ditions covers all possible states.

or
when <condition> => accept ..

end select;
This form is identical to
Dijkstra’s guarded commands.
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Selective Synchronization

Message-based selective synchronization in Ada

::= select
[guard] selective_accept_alternative
{ or [guard] selective_accept_alternative }
[ else sequence_of_statements ]
end select;

guard ::= when <condition> => selective_accept_alternative accept_alternative |
delay_alternative |
terminate_alternative

accept_alternative ::= accept_statement [ sequence_of_statements ]
delay_alternative delay_statement [ sequence_of_statements ]
terminate_alternative terminate;
accept_statement ::= accept entry_direct_name [(entry_index)] parameter_profile [do
handled_sequence_of_statements
end [entry_identifier]];
delay_statement ::= delay until delay_expression; | delay delay_expression;
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Selective Synchronization

Basic forms of selective synchronization

(select-guarded-accept-else)

o Ifall currently open entries have no waiting
calls or all entries are closed
1= The else alternative is chosen, the as-
sociated statements executed and
the select statement completes.

select
when <condition> => accept ..
or
when <condition> => accept ..
or Otherwise = one of the open entries
when <condition> => accept .. with waiting calls is chosen as above.
glsc This form never suspends the task.
<statements>
end select;

This enables a task to withdraw its of-
fer to accept a set of calls if no
tasks are currently waiting.
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Selective Synchronization

Basic forms of selective synchronization

(select-accept)

* If none of the entries have waiting calls
w the process is suspended

until a call arrives.
select

accept .. If exactly one of the entries has waiting calls
or = this entry is selected.
accept ... If multiple entries have waiting calls
or = one of those is selected (non-determin-
accept .. istically). The selection can be prioritized
by means of the real-time-systems annex.
The code following the select-
ed entry (if any) is executed and the
select statement completes.

end select;
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Selective Synchronization

Basic forms of selective synchronization

(select-guarded-accept-delay)

select
when <condition> => accept ..

¢ If none of the open entries have waiting
calls before the deadline specified by the
earliest open delay alternative
w This earliest delay alternative is chosen and
the statements associated with it executed.

when <condition> => accept ..
when <condition> => accept ..

Otherwise 1= one of the open entries

when <condition> => delay [until] .. with waiting calls is chosen as above.

<statements>
This enables a task to withdraw its of-
when <condition> => delay [until] .. fer to accept a set of calls if no other
<statements> task is calling after some time.

end select;
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Selective Synchronization

Basic forms of selective synchronization

(select-guarded-accept-terminate)

* If none of the open entries have waiting
calls and none of them can ever be called

select again .

when <condition> => accept .. = The terminate alternative
o chosen, i.e. the task is terminated.

when <condition> => accept ..
or

when <condition> => accept ..

This situation occurs if:
w ... all tasks which can possibly call on
any of the open entries are terminated.
or & or ... all remaining tasks which can possibly
when <condition> => terminate; call on any of the open entries are waiting
— ] on select-terminate statements themselves
end select; | terminate cannot be and none of their open entries can be
| mixed with else or delayJ called either. In this case all those waiting-
R ———————————— for-termination tasks are terminated as well.
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Selective Synchronization

Message-based selective synchronization in Ada

Forms of selective waiting:

select_statement ::= selective_accept

asynchronous_select

... underlying concept: Dijkstra’s guarded commands
and implements ...
. the possibility to withdraw an outgoing call.
.. this might be restricted if calls have already been partly processed.
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Selective Synchronization

Conditional entry-calls

conditional_entry_call ::=
select ¢ Ifthe call is not accepted immediately
entry_call_statement e The else alternative is chosen.
[sequence_of_statements]
else
sequence_of_statements
end select

This is e.g. useful to probe the
state of a server before commit-
ting to a potentially blocking call.

Even though it is tempting to use this
statement in a “busy-waiting” seman-
tic, there is usually no need to do so,
as better alternatives are available.

Example:
select
Light_Monitor.Wait_for_Light;
Lux := True;
else There is only one entry-call
Lux := False; and one else alternative.
end;
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Selective Synchronization

Timed entry-calls

timed_entry_call ::=
select
entry_call_statement

f_statement: i
or [sequence_of _statenents] o Ifthe call is not accepted before the dead-

delay_alternative line specified by the delay alternative
end select = The delay alternative is chosen.

Example: This is e.g. useful to withdraw an entry
select call after some specified time-out.
Controller.Request (Some_Item);

There is only one entry-call and
process data

one delay alternative.

delay 45.0; ------ seconds
try something else
end select;
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Non-determinism

Correctness of non-deterministic programs

Partial correctness:

(P(I) Aterminates(Program(I,0))) = Q(I,0)
Total correctness:

P(I) = (terminates (Program (1,0)) A Q(1,0))

Safety properties:
(P(I) A Processes (1,5)) = 0Q(1,S)
where 0 Q means that Q does always hold
Liveness properties:
(P(I) A Processes (1,S)) = <Q(1,S)

where <&Q means that Q does eventually hold (and will then stay true)
and S is the current state of the concurrent system
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Selective Synchronization

Message-based selective synchronization in Ada
Forms of selective waiting:

select_statement ::

selective_accept |
conditional_entry_call |
timed_entry_call |

... underlying concept: Dijkstra’s guarded commands
implements ...

... the possibility to escape a running code block due to an event from outside this task.
(outside the scope of this course = check: Real-Time Systems)
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Correctness of non-deterministic programs
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Non-determinism

Non-determinism

> Correctness predicates need to hold true
irrespective of the actual sequence of interaction points.

w Correctness predicates need to hold true
for all possible sequences of interaction points.
Therefore correctness predicates need to be based on invariants,

i.e. invariant predicates which are independent of the potential execution sequences,
yet support the overall correctness predicates.
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Non-determinism

Non-determinism
Sources of Non-determinism

As concurrent entities are not in “lockstep” synchronization, they “overtake” each other
and arrive at synchronization points in non-deterministic order, due to (just a few):

* Operating systems / runtime environments:
= Schedulers are often non-deterministic.
1= System load will have an influence on concurrent execution.
1 Message passing systems react load depended.
Networks & communication systems:
v Traffic will arrive in an unpredictable way (non-deterministic).
= Communication systems congestions are generally unpredictable.
Computing hardware:
w Timers drift and clocks have granularities.
w Processors have out-of-order units.
... basically: Physical systems (and computer systems connected to the physical world)
are intrinsically non-deterministic.
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Non-determinism
Correctness of non-deterministic programs

For example (in verbal form):
“Mutual exclusion accessing a specific resource holds true,
for all possible numbers, sequences or interleavings of requests to it”

An invariant would for instance be that the number of writing
tasks inside a protected object is less or equal to one.

w Those invariants are the only practical way to guarantee (in a logical sense)
correctness in concurrent / non-deterministic systems.

(as enumerating all possible cases and proving them individually is in general not feasible)
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Non-determinism

Correctness of non-deterministic programs

Concrete:
select

when <condition> => accept ..

or

when <condition> => accept ..
or

when <condition> => accept ..

end select;

w Every time you formulate a non-de-
terminstic statement like the one on
the left you need to formulate an
invariant which holds true whichever
alternative will actually be chosen.

This is very similar to finding

loop invariants in sequential programs
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Summary

Non-Determinism

¢ Non-determimism by design:
¢ Benefits & considerations

¢ Non-determinism by interaction:
¢ Selective synchronization
¢ Selective accepts
¢ Selective calls
 Correctness of non-deterministic programs:
* Sources of non-determinism
¢ Predicates & invariants

page 395 of 758 (chaper 4: “Non-determinisni” up io pa
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Data Parallelism

Vector Machines

Vectorization

Potentially concurrent, yet: |
L _ - —
\ j
Executed sequentially.

type Scalar = Real_Precision L ‘
type Vector = [Real_Precision]

type Real_Precision = Float

scale :: Scalar -> Vector -> Vector
scale scalar vector = map (scalar %) vector

2020 Uwe R. Zimver, The Ausiralian National University page 399 of 758 (chapter 5: “Data Parallelism” up to page 427)
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Data Parallelism
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Data Parallelism

Vector Machines

Vectorization

type Real_Precision = Float

type Scalar = Real_Precision

type Vector = [Real_Precision]

scale :: Scalar -> Vector -> Vector

scale scalar vector = map (scalar *) vector

Data Parallelism

Vector Machines

Vectorization

eLEEIAS (TR ol TR Executed in parallel.

type Real_Precision = Float

type Scalar = Real_Precision

type Vector = [Real_Precision]

scale :: Scalar -> Vector -> Vector

scale scalar vector = parMap rpar (scalar *) vector

‘ This may be faster or slower
than a sequential execution.

©2020 Uwe R. Zimmer, The Austalian National U page 400 of 758 (chaper 5: “Da

Vector Machines

Vectorization

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;
function Scale (Scalar : Real; Vector : Vectors) return Vectors is
Scaled_Vector : Vectors (Vector’Range);
begin
for i in Vector’Range loop
Scaled_Vector (i) := Scalar * Vector (i);
end loop;
return Scaled_Vector;
end Scale;

we R. Zimmer, The Ausiralian National University page 401 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Buzzword collection:
AltiVec, SPE, MMX, SSE,
‘ NEON, SPU, AVX, ...

Vector Machines —

Vectorization

Translates into ‘
CPU-level vector operations J

=

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;
function Scale (Scalar : Real; Vector : Vectors) return Vectors is
Scaled_Vector : Vectors (Vector’Range);
begin
for i in Vector’Range loop
Scaled_Vector (i) := Scalar * Vector (i); [
end loop;
return Scaled_Vector;
end Scale;

Combined with
in-lining, loop unrolling and caching
this is as fast as a single CPU will get.
LU — S— SR
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Data Parallelism

Data Parallelism

Vector Machines

=
Vectorization

| Function is |
| “promoted” |
const Index = {1 .. 100000000}, —
Vector : [Index] real = 1.0,
Scale  : real = 5.1,
Scaled : [Vector] real = Scale * Vector;
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Vector Machines

Vectorization

| Functionis |

| “promoted” |
const Index = {1 .. 100000000}, i
Vector : [Index] real = 1.0,

Scale : real = 5.1,
Scaled : [Vector] real = Scale * Vector;

]
| Translates into CPU-level vector operations
‘ as well as multi-core or

fully distributed operations
.

© 2020 Uwe R. Zimmer, The Australian Nati




Data Parallelism

Vector Machines

Reduction

type Real_Precision = Float
type Vector = [Real_Precision]

equal :: Vector -> Vector -> Bool
equal v_1 v_2 = foldr (&) True $ zipWith (==) v_1 v_2

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;

function ”=" (Vector_1, Vector_2 : Vectors) return Boolean is
(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));
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Data Parallelism

Vector Machines

Reduction

type Real_Precision = Float

type Vector = [Real_Precision]

equal :: Vector -> Vector -> Bool

equal v_1 v_2 = foldr (&) True $ zipWith (==) v_1 v_2

—

Potentially concurrent, yet: ‘7 I
-

j Executed lazy sequentially. ‘
J

©2020 Uwe . Zimmer, The

Data Parallelism

©2020 Uwe . Zimmer, The Austalian National U Tage 409 o1 753 (chaper 5

Vector Machines

Reduction

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;

function ”=” (Vector_1, Vector_2 : Vectors) return Boolean is
(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));
-

Translates into
| CPU-level vector operations P
| A<chainii lazy sequentiall W
‘Achamlsevaluated y seq Y.

Data Parallelism

Vector Machines

Reduction

type Real_Precision = Float
type Vector = [Real_Precision]
equal :: Vector -> Vector -> Bool
equal = (==)

— k
‘ Potentially concurrent, yet: S 7‘

Executed lazy sequentially. J

Data Parallelism

Vector Machines

Reduction

—
| Infinite |
| recursion |

type Real is digits 15; Bhdanhinslil

type Vectors is array (Positive range <>) of Real;
function ”=" (Vector_1, Vector_2 : Vectors) return Boolean is (Vector_1 = Vector_2);

]
Translates into
CPU-level vector operations ‘

-chain i lazy sequentially.
\Lchamls evaluated lazy seq Y.

we R. Zimmer, The Ausiralian National University

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;
function Equal (Vector_1, Vector_2 : Vectors) return Boolean is (Vector_1 = Vector_2);

Translates into
CPU-level vector operations ‘

i e B

‘ A-chain is evaluated lazy sequentiallﬂ

02020 Unve R. Zimmer, The Australian National Universty

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;
function Equal (Vector_1, Vector_2 : Vectors) return Boolean renames "=";

[ .
Translates into

| CPU-level vector operations l
1/ -chain i sequentiall [
‘ A-chain is evaluati!ai i L

2020 Uve R. Zin

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;

function ”=" (Vector_1, Vector_2 : Vectors) return Boolean is
(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Translates into
CPU-level vector operations ‘

| SRR S —

- .
‘ A-chain is evaluated lazy sequentlallﬁ
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Data Parallelism

Vector Machines

Reduction

const Index = {1 .. 100000000},
Vector_1, Vector_2 : [Index] real = 1.0;
proc Equal (v1, v2) : bool
{return 8& reduce (V1 == v2);}

\ Function is |
| “promoled” |

Data Parallelism

Vector Machines
General Data-parallelism

WFIROR /-

Data Parallelism

Vector Machines

Reduction

const Index = {1 .. 100000000}, ‘
Vector_1, Vector_2 : [Index] real = 1.0;
proc Equal (v1, v2) : bool
{return 8 reduce (v1 == v2);}

A-operations are

| evaluated in a concurrent
divide-and-conquer

‘ (binary tree) structure.

Translates into CPU-level vector operations
as well as multi-core or
\ fully distributed operations

| Function is | ‘
| “promoted” |
L

Data Parallelism

Vector Machines

General Data-parallelism

page 418 0f 755

Data Parallelism

Vector Machines

Reduction

const Index = {1 .. 100000000},
Vector_1, Vector_2 : [Index] real = 1.0;
proc Equal (v1, v2) : bool — |
ismatch
{return v1 == v2;} )‘ Ty,pefmf )
writeln (Equal (Vector_1, Vector_2));

Data Parallelism

Vector Machines

General Data-parallelism

const Mask : . 3] real = ((o, -1, @),

Data Parallelism

Vector Machines

General Data-parallelism

WEIRCHO

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, @, (-1,

proc Unsharp_Mask (P, (i, j) : index (Image)) : real
{return + reduce (Mask * P [i -1 .. i+1, j-1..3j+11);}

5, -1, (o,

22020 Unve K. Zi

Data Parallelism

Vector Machines

General Data-parallelism

const Mask : [1 .. 3, 1 .. 3] real = ((o, -1, 0), (-1, 5, -1), (@
proc Unsharp_Mask (P, (i, j) : 1nde>< (Image)) : real
{return + reduce (Mask * P [i -1 ..1+1,j-1..3+11);}

const Sharpened_Picture = forall px in Image do Unsharp_Mask (Picture

» 71, 0));

) PX);
The Austalan Natonal Universiy

page 421 of 753 (chapter 5: “Data Parallelism” up 1o page 427)

Data Parallelism

Vector Machines

General Data-parallelism

WOM _ IVSReUE [YSReTe
} ‘ Translates into CPU- Ievel vector operations | !
as well as multi-core or

fully distributed operatlons

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, @, (-1,

proc Unsharp_Mask (P, (i, j) : index (Image)) : real
{return + reduce (Mask * P [i -1 .. i+1, j-1..3j+11);}

const Sharpened_Picture = forall px in Image do Unsharp_Mask (Picture

5, -1, (0, -1, 0);

, PX);

©2020 Uwe R. Zimmer, The Austaliar




Data Parallelism

Vector Machines

Data Parallelism

Data Parallelism

Vector Machines

C
= General Data-parallelism

Cellular automaton transitions from a state S into the next state S":
s> s ©Vec€E s:ic— c = 1s,c) ie.all cells of a state

Vector Machines

C
=y General Data-parallelism

General Data-parallelism

Cellular automaton transitions from a state s into the next state S":
s> 8 ©Vec€Es:c~ c = 1A8,c) ie.all cells of a state
transition concurrently into new cells by following a rule 1.

transition concurrently into new cells by following a rule 1.

Next_State = forall World_Indices in World do Rule (State, World_Indices);

427
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Data Parallelism

Vector Machines

C
= General Data-parallelism

Cellular automaton transitions from a state S into the next state S”:
s> 8 & VceE S:c~ ¢ = 1s,c) i.e.all cells of a state
transition concurrently into new cells by following a rule 1.

Summary

Data Parallelism

¢ Data-Parallelism

* Vectorizatio

Next_State = forall World_Indices in World do Rule (State, World_Indices); ectorization
eduction

John Conw Game of Life rule: * General data-parallelism

proc Rule (S, (i, j) : index (World)) : Cell {
const Population : index ({0 .. 9})
+ reduce Count (Cell.Alive, S [i -1 ..1+1
return (if Population
|1 (Population &% S [i, j] == Cell.Alive) then Cell.Alive
else Cell.Dead);

¢ Examples

I (S ¢ Image processing

¢ Cellular automata
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=3 Scheduling

Motivation and definition of terms

Purpose of scheduling

Two scenarios for scheduling algorithms:

1. Ordering resource assignments (CPU time, network access,

w live, on-line application of scheduling algorithms.

Predicting system behaviours under anticipated loads.

simulated, off-line application of scheduling algorithms.

Predictions are used:

 at compile time: to confirm the feasibility of the system, or to predict resource needs

® at run time: to permit admittance of new requests or for load-balancing, ...

Scheduling
Definition of terms

Time scales of scheduling

pre-emption or cycle done

= Short term  executin:

suspend (swap-out)

ready, suspended
‘ ‘ ‘ ‘ ‘ ‘ suspend (swap-out)
swapin

unblock
blocked, suspended

e LTI e
blocked

block or synchronize

ﬂ_..

Scheduling

Motivation and definition of terms

Criteria

Process / user perspective:

Waiting timq

minimize the ...

e

Response time

Turnaround

System per:

Throughput

time

spective:

Scheduling
Definition of terms

Time scales of scheduling

Long-term pre-emption or cycle done

minimize deviation from given ...

PBerch admn Short-term  executin:
T e

suspend (swap-out)

ready, suspended

‘ ‘ ‘ ‘ ‘ ‘ suspend (swap-out)

swap-in
unblock
blocked, suspended

s
blocked

Medium-term

block or synchronize

=3 Scheduling

Definition of terms

Time scales of scheduling

pre-emption or cycle done

e Short term  executin:

blocked

block or synchronize

L Scheduling

Performance scheduling

Requested resource times

L LI A e e L L
5 10 15 20 2 30 35 4 45 time}

Tasks have an average time between instanti
and a constant computation time of




Scheduling

Performance scheduling

First come, first served (FCFS)

Waiting time: 0..11, average: 5.9 — Turnaround time: 3..12, averag

As tasks apply concurrently for resources, the actual sequence of arrival is non-deterministic.
hence even a deterministic scheduling schema like FCFS can lead to different outcomes.

Scheduling

Performance scheduling

Feedback with 2/ pre-emption intervals

riority 0
dispatch 20
Implement multiple

hierarchical ready-queues.

Fetch processes from the priority 1
highest filled ready queue.

Dispatch more CPU time for .
lower priorities (2" units). Tt

dispatch 21

prionty | dispatch 2/
e —

Processes on lower ranks
may suffer starvation.

New and short tasks will be preferred|

= Scheduling

Performance scheduling

Shortest job first

Good choice if computation times are known and task switches are expensive!

Scheduling

Performance scheduling

First come, first served (FCFS)

ng time: 0..11, average: 5.4 — Turnaround tim

In this exampl
the average waiting times vary between 5.4 and 5.9
the average turnaround times vary between 8.0 and 8.4

Shortest possible maximal turnaround time!

Scheduling

Performance scheduling

pre-emption intervals - sequential

Waiting time: 0.5, average: 1.5 - Turnaround time: 1.21, average: 5.7

Optimized for swift initial respon:
Prefers short tasks and long tasks can suffer starvation.

Very short initial response times! and good average turnaround times.

Scheduling

Performance scheduling

Shortest job first

- Scheduling

Performance scheduling

Round Robin (RR)

s Optimized f ift initial responses.

w “Stretches out” long tas!

v Bound maximal waiting time! (depended only on the number of tasks)

Scheduling

Performance scheduling

Feedback with 2/ pre-emption intervals - overlapping

Mo MmN W MW
— =t = =
——

Waiting time: 0.3, average: 0.9 — Turnaround time: 1..45, average: 7.7

Optimized for swift initial respon

w Prefers short tasks and long tasks can suffer starvation.

v Long tasks are delayed until all queues run empty!

= Scheduling

Performance scheduling

Highest Response Ration “il i First (HRRF)

v More task switches and worse averages than SJF but better upper bounds!
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Performance scheduling

VScheduIingr

== Scheduling

Performance scheduling Performance scheduling

Shortest Remaining Time First (SR nparison (in order of appearance)

Comparison by shortest maximal waiting

Waiiini times : iAVmges
urnaround times

S 1 ——|
T T T | |

] T

TITT | lyiting fnes o Averaed 1

TTTT T W——— ]
B |
TITTTT T

25 30 35

S r - T T T
Waiting time: 0..6, average: 0.7 — Turnaround time: , average: TTITTT
= Optimized for good averages. .

w Prefers short tasks and long tasks can suffer .. T — M

= Providing upper bounds to waiting times s Swift response systems

450
7 75Chedulingr 7 _L"‘f'

Performance scheduling

VScheduIingr

=3 Scheduling

Performance scheduling

Performance scheduling

Comparison by shortest average waiting Comparison by shortest maximal turnaround Comparison by shortest average turnaround

|
1
TS Wy Sy WY

U —T

Bimes o Averagel ]|

TTT™ T[] \\nl‘lnitlmul i’“‘“‘eesﬂ
TTT urmarcund times | | [[]

P ey —p—T

TEey v —T
T Ty R—r
N —
T p—

30 35

O T T IO o
ey — ™ | |
et 11 B A

e i e B o i =

urmaround fimes D

45

w Providing upper bounds to turnaround time: o tasks are left behind

Scheduling 7 VSCheduIingr

Performance scheduling

Scheduling
Predictable scheduling
Comparison overview Towards predictable scheduling ...

Selection Pre_- Waiting Turnaround Pre_ferred Slarv:cllion ) ) )
emption jobs possible? Task requirements (Quality of service):

Predictable scheduling

Temporal scopes

Methods without any knowledge about the processes 3 Common attributes:
ntee data flow levels

long average &

short maximum )

good average & ntee deadlines

large maximum Eol 5 ntee delivery times

short average &

long maximum

FCFS max (W;) no long equal 5 ntee reaction times

RR  equal share yes bound

l&— max. elapse time ——=}
dead!

B priority * Maximal execution time @ max. delay
queues

e = Provide bounds for the variations in results e min. delay

yes very short

Task i

Methods employing computation time C; and elapsed time E; Examples:

min(C;) medium medium short
controllable controllable
compromise compromise

very short wide variance short

Streaming media broadcasts, playing HD videos, live mixing audio/video, ...
controllable Reacting to use

created
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Predictable scheduling
Temporal scopes

Common attributs

elapse time
deadline

o Maxima T 't max. delay
Maximal execution time L min. delay

-t
1 10
created activated

7 75Chedulingr 7

Predictable scheduling

Common temporal scope attributes

Temporal scopes can be:
Periodic w controllers, routers, schedulers, streaming processes, ...
Aperiodic w periodic ‘on average' tasks, i.e. regular but not rigidly timed, ...

Sporadic / Transient 1= user requests, alarms, I/O interactiol

Deadlines can be
| “Hard” w single failure leads to severe malfunction and/or disaster
= results are meaningless after the deadline
1 only multiple or permanent failures lead to malfunction

“Soft” w results are still useful after the deadline

VScheduIingr

Predictable scheduling
Temporal scopes

Common attribute:

elapse time

lapse time

deadline

¢ Maximal execution time < min. delay

t
1 20
created activated re-activated
suspended

Scheduling

Summary

Scheduling

e Basic performance scheduling

* Motivation & Terms
¢ Levels of knowledge / assumptions about the task set
¢ Evaluation of performance and selection of appropriate methods

* Towards predictable scheduling

* Motivation & Terms

¢ Categories & Examples

terminated

= Scheduling

Predictable scheduling

Temporal scopes

Common attributes:

fI:]

f— elapse time ———#

L max. elapse time
deadline

o Maxima T ‘- max. delay
Maximal execution time i min. delay

-
1 10 20 25
created activated re-activated

suspended terminated
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Safety & Liveness
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Safety & Liveness

Repetition

Correctness concepts in concurrent systems

Extended concepts of correctness in concurrent systems:
— Termination is often not intended or even considered a failure

Safety properties:
(P(I) A Processes (1,S)) = 0Q(I,S)
where 0 Q means that Q does always hold
Liveness properties:
(P(I) A Processes (1,5)) = <Q(1,S)
where <Q means that Q does eventually hold (and will then stay true)
and S is the current state of the concurrent system
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Safety & Liveness

Repetition

Correctness concepts in concurrent systems

Liveness properties:
(P() A Processes (1,5)) = <Q(1,S)

where &Q means that Q does eventually hold (and will then stay true)

Examples:

* Requests need to complete eventually.
* The state of the system needs to be displayed eventually.
* No part of the system is to be delayed forever (fairness).

w Interesting liveness properties can become very hard to proof

©2020 Uwe R. Zimmer, The Ausiral page 463 of 758 (chapter 7: *Safety & Liveness” up to page 463)

Safety & Liveness

Liveness
Fairness

Liveness properties:
(P(I) A Processes (1,5)) = <Q(1,S)

where &Q means that Q does eventually hold (and will then stay true)
Fairness (as a means to avoid starvation): Resources will be granted ...

o Weak fairness: ©0OR = <G ... eventually, if a process requests continually.
e Strong fairness:0CR = G ... eventually, if a process requests infinitely often.

e Linear waiting: ©R = <G ... before any other process had the same resource
granted more than once (common fairness in distributed systems).

o First-in, first-out: ©R = <G ... before any other process which applied for the same
resource at a later point in time (common fairness in single-node systems).
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Safety & Liveness

Revisiting

Correctness concepts in concurrent systems

Safety properties:
(P(I) A Processes (1,5)) = 0Q(1,S)

where 0 Q means that Q does always hold

Examples:

* Mutual exclusion (no resource collisions) 1= has been addressed
e Absence of deadlocks v to be addressed now
(and other forms of ‘silent death’ and ‘freeze’ conditions)

e Specified responsiveness or free capabilities &= Real-time systems
(typical in real-time / embedded systems or server applications)
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Safety & Liveness

Deadlocks
Most forms of synchronization may lead to

Deadlocks

(Avoidance / prevention of deadlocks is one central safety property)

1> How to predict them?

> How to find them?

> How to resolve them?

i ... or are there structurally dead-lock free forms of synchronization?
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Safety & Liveness

Towards synchronization

Reserving resources in reverse order
var reserve_1, reserve_2 : semaphore := 1;

process P1; process P2;
statement X; statement A;

statement Y; -- employ all resources statement B; -- employ all resources

statement Z; statement C;
end P1; end P2;

Sequence of operations: A ~ B ~ C; X ~ Y ~ Z; [X,Z | A,B,C} [A,C | X,v,Z}; =[B | Y]
or:[A | X]followed by a deadlock situation.

20 Usve R. Zimmer, The Austraian National Universiy pter 7: “Saley & Liveness” up to page 51

Safety & Liveness

Towards synchronization

Circular dependencies
var reserve_1, reserve_2, reserve_3 : semaphore := 1;

process P1; process P2; process P3;
statement X; statement A; statement K;

statement Y; statement B; statement L;

statement Z; statement C; statement M;
end P1; end P2; end P3;
Sequence of operations: A =~ B ~ G X ~Y =~ Z K~ L~ M;
[X.Z | A,B,C | KMJ[A,C | X,V,Z | KML[A,C | KLM | X,ZE—[B | VL]
or:[A | X | K]followed by a deadlock situation.
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Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.
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Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:

a process applies for a resource, while it is holding another resource (sequential requests).
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Safety & Liveness

© 2020 Uwe R. Zimmer, The Ausirlian National Universiy

Deadlocks

Necessary deadlock conditions:

. Mutual exclusion:
resources cannot be used simultaneously.

. Hold and wait:

a process applies for a resource, while it is holding another resource (sequential requests).

. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.
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Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:

a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.

4. Circular wait: a ring list of processes exists,
where every process waits for release of a resource by the next one.
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Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:

a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.

4. Circular wait: a ring list of processes exists,
where every process waits for release of a resource by the next one.

1 A system may become deadlocked, if all these conditions apply!
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Safety & Liveness

Deadlocks

Deadlock strategies:

Ignorance & restart

15 Kill or restart unresponsive processes, power-cycle the computer, ...

Deadlock detection & recovery
1= find deadlocked processes and recover the system in a coordinated way

Deadlock avoidance
15 the resulting system state is checked before any resources are actually assigned

Deadlock prevention
155" the system prevents deadlocks by its structure
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Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: Mutual exclusion
Hold and wait

No pre-emption
Circular wait
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Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)
. Break Mutual exclusion: Mutual exclusion

By replicating critical resources, mutual exclusion becomes un- Hold and wait
necessary (only applicable in very specific cases). No pre-emption

. Break Hold and wait: Circular wait

©2020 Uwe R. Zimmer, The Ausialian National University o 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)
1. Break Mutual exclusion: Mutual exclusion

By replicating critical resources, mutual exclusion becomes un- Hold and wait
necessary (only applicable in very specific cases). No pre-emption

2. Break Hold and wait: Circular wait
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption: :
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Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specific cases).

. Break Hold and wait:
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

Mutual exclusion
Hold and wait
No pre-emption
Circular wait

. Introduce Pre-emption:
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

4. Break Circular waits:
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Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specific cases).

2. Break Hold and wait:
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

Mutual exclusion
Hold and wait
No pre-emption
Circular wait

3. Introduce Pre-emption:
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

4. Break Circular waits:
E.g. order all resources globally and restrict processes to request resources in that order only.
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Deadlocks

Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

RAG = {V, E}; Resource allocation graphs consist of vertices V and edges E.

V = P UR; Vertices V can be processes P or Resource types R.

with processes P = {P;,...,P,}
and resources types R = {Ry,...R;}

E = E. UE, UE, Edges E can be “claims” E, “requests” E, or “assignments” £,

with claims E. = {P; = Rj...}
requests £, = {P; > Rj,...
and assignments £, = {R; = P;,...}

Note: any resource type R; can have more than one instance of a resource.

© 2020 Uwe R. Zimmer, The Ausirlian National Universiy
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Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)
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Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

= Two process, reverse allocation deadlock:
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Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)
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Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

= No circular dependency = no deadlock:
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Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)
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Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

i Two circular dependencies 1= deadlock:

Py Ry = Py Ry~ Py~ Ry~ Py
aswellas: Py > Ry > P3 > Ry = P,

Derived rule:
If some processes are deadlocked then there
are cycles in the resource allocation graph.
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Safety & Liveness

Deadlocks
Edge Chasing

(for the distributed version see Chandy, Misra & Haas)

blocking processes:
w Send a probe to all requested yet unassigned resources con-
taining ids of: [the blocked, the sending, the targeted node].

nodes on probe reception:

1= Propagate the probe to all processes holding the critical
resources or to all requested yet unassigned resources —
while updating the second and third entry in the probe.

a process receiving its own probe:
(blocked-id = targeted-id)

w Circular dependency detected.

page 457 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

> Knowledge of claims:

Claims are potential future requests which have no blocking ef-
fect on the claiming process — while actual requests are blocking.
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

1 Assignment of resources such that
circular dependencies are avoided:
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Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Earlier derived rule:

If some processes are deadlocked
then there are cycles in the resource allocation graph.

= Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked.

i Reverse rule for single instances:
If there are cycles in the resource allocation graph
and there is exactly one instance per resource
then the involved processes are deadlocked.
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Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for single instances:

If there are cycles in the resource allocation graph
and there is exactly one instance per resource
then the involved processes are deadlocked.

w Actual deadlock identified
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Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked.

i Potential deadlock identified
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Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:

If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked.

> Potential deadlock identified
- yet clearly not an actual deadlock here
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Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

How to detect actual deadlocks
in the general case?

(multiple instances per resource)
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Safety & Liveness

Deadlocks
Banker’s Algorithm

There are processes P; € {Py,...,P,} and resource types R; € {Ry,...,R .} and data structures:

® Allocated [i, j]
s the number of resources of type j currently allocated to process i.
Free [j]
w the number of currently available resources of type j.
Claimed [i, j]
wr the number of resources of type j required by process i eventually.
Requested [i, jI
= the number of currently requested resources of type j by process i.
Completed [i]
w boolean vector indicating processes which may complete.
* Simulated_Free [j]

= Number of available resources assuming that complete processes deallocate their resources.
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Safety & Liveness

Deadlocks
Banker’s Algorithm

1.Simulated_Free < Free; Vi: Completed [i] < False;

2.While Ji: —Completed [i]
and Vj: Requested [i, j1 < Simulated_Free [j] do:

Vj: Simulated_Free [j] < Simulated_Free [j]+ Allocated [i, jI;
Completed [i] < True;

3.1f Vi: Completed [i] then the system is currently

else all processes i with —Completed [i] are involved in a deadlock!.
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Safety & Liveness

Deadlocks
Banker’s Algorithm

1.Simulated_Free < Free; Vi: Completed [i] & False;

2.While Ji: —Completed [i]
and Vj: Claimed [i, j] < Simulated_Free [j] do:

Vj: Simulated_Free [j] < Simulated_Free [j]+ Allocated [i, jI;
Completed [i] < True;

3.1f Vi: Completed [i] then the system is

A system is a system in which future deadlocks can be
avoided assuming the current set of available resources.
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Safety & Liveness

Deadlocks
Banker’s Algorithm

Check potential future system safety by simulating a granted request:
(Deadlock avoidance)

if (Request < Claimed) and (Request < Free) then
Free = Free - Request;

Claimed := Claimed - Request;

Allocated := Allocated + Request;

if (checked by e.g. Banker’s algorithm) then
1 Grant request

1> Restore former system state: (Free, Claimed, Allocated)
end if;
end if;
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Safety & Liveness

Deadlocks
Distributed deadlock detection

Observation: Deadlock detection methods like Banker’s Algorithm are too communication
intensive to be commonly applied in full and at high frequency in a distributed system.

w Therefore a distributed version needs to:

w Split the system into nodes of reasonable locality
(keeping most processes close to the resources they require).

1= Organize the nodes in an adequate topology (e.g. a tree).

= Check for deadlock inside nodes
with blocked resource requests and detect/avoid local deadlock immediately.

w Exchange resource status information
between nodes occasionally and detect global deadlocks eventually.
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Safety & Liveness

Deadlocks
Deadlock recovery

A deadlock has been detected = now what?

Breaking the circular dependencies can be done by:

w Either pre-empt an assigned resource which is part of the deadlock.
& or stop a process which is part of the deadlock.

Usually neither choice can be implemented ‘gracefully’ and deals only with the symptoms.

Deadlock recovery does not address the reason for the problem!
(i.e. the deadlock situation can re-occur again immediately)

©2020 Uwe R. Zimmer, The Ausialian National University
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Safety & Liveness

Deadlocks
Deadlock strategies:

Deadlock prevention
System prevents deadlocks by its structure or by full verification

Deadlock avoidance
System state is checked with every resource assignment.

Deadlock detection & recovery
Detect deadlocks and break them in a‘coordinated’ way.

Ignorance & random kill
Kill or restart unresponsive processes, power-cycle the computer, ...
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Atomic & idempotent operations

Atomic operations

Definitions of atomicity:

An operation is atomic if the processes performingit ...
* (by ‘awareness’) ... are not aware of the existence of any other active
process, and no other active process is aware of the activity of the
processes during the time the processes are performing the atomic operation.

(by communication) ... do not communicate with other
processes while the atomic operation is performed.

(by means of states) ... cannot detect any outside state change and do not
reveal their own state changes until the atomic operation is complete.
Short:
An atomic operation can be considered to be
indivisible and instantaneous.
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Atomic & idempotent operations

Atomic operations

| Atomic Operations |

Indivisible
phases

‘ammitmenl (imeTJ
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Safety & Liveness

Atomic & idempotent operations

Atomic operations

Important implications:
1. An atomic operation is either performed in full or not at all.

2. A failed atomic operation cannot have any impact on its
surroundings (must keep or re-instantiate the full initial state).

3.1f any part of an atomic operation fails,
then the whole atomic operation is declared failed.

4. All parts of an atomic operations (including already completed parts)
must be prepared to declare failure
until the final global commitment.
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Atomic & idempotent operations

Idempotent operations

Definition of idempotent operations:

An operation is idempotent if the observable effect of the oper-
ation are identical for the cases of executing the operation:

¢ once,
¢ multiple times,
« infinitely often.

Observations:

¢ Idempotent operations are often atomic, but do not need to be.
* Atomic operations do not need to be idempotent.
¢ Idempotent operations can ease the requirements for synchronization.
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Reliability, failure & tolerance

‘Terminology of failure’ or ‘Failing terminology’?

Reliability ::= measure of success
with which a system conforms to its specification.
= low failure rate.

Failure = a deviation of a system from its specification.
Error ::= the system state which leads to a failure.

Fault ::= the reason for an error.
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Safety & Liveness

Reliability, failure & tolerance

Faults during different phases of design

* Inconsistent or inadequate specifications
w frequent source for disastrous faults

e Software design errors
w frequent source for disastrous faults

e Component & communication system failures
wr rare and mostly predictable
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Safety & Liveness

Reliability, failure & tolerance

Faults in the logic domain

* Non-termination / -completion
Systems ‘frozen’ in a deadlock state, blocked for missing input, or in an infinite loop
w Watchdog timers required to handle the failure

* Range violations and other inconsistent states
1 Run-time environment level exception handling required to handle the failure

¢ Value violations and other wrong results
w User-level exception handling required to handle the failure
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Reliability, failure & tolerance

Faults in the time domain

¢ Transient faults
wr Single ‘glitches’, interference, ... very hard to handle

¢ Intermittent faults
w Faults of a certain regularity ... require careful analysis

* Permanent faults
w Faults which stay ... the easiest to find
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Reliability, failure & tolerance

Observable failure modes

- -
| fa |
r { uncontrolled. |
. R
Time domain Value domain
i -

never
late (omission)

fail
controlled
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Reliability, failure & tolerance

Fault prevention, avoidance, removal, ...

and/or

1= Fault tolerance
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Reliability, failure & tolerance

Fault tolerance

o Full fault tolerance

the system continues to operate in the presence of ‘foreseeable’ error conditions,
without any significant loss of functionality or performance
— even though this might reduce the achievable total operation time.

¢ Graceful degradation (fail soft)
the system continues to operate in the presence of ‘foreseeable’ error conditions,
while accepting a partial loss of functionality or performance.

e Fail safe
the system halts and maintains its integrity.

w Full fault tolerance is not maintainable for an infinite operation time!

ww Graceful degradation might have multiple levels of reduced functionality.
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Summary
Safety & Liveness

e Liveness
* Fairness

e Safety
¢ Deadlock detection
¢ Deadlock avoidance
¢ Deadlock prevention

¢ Atomic & Idempotent operations
¢ Definitions & implications

¢ Failure modes
* Definitions, fault sources and basic fault tolerance
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Network protocols & standards

051 Network Layers

1: Physical Layer

e Service: Transmission of a raw bit stream
over a communication channel

* Functions: Conversion of bits into electrical or optical signals
* Examples: X.21, Ethernet (cable, detectors & amplifiers)

—r |
o]

Distributed Systems

Network protocols & standards
OSI network reference model
Standardized as the

Open Systems Interconnection (OSI) reference model by the
International Standardization Organization (I1SO) in 1977

e 7 layer architecture
e Connection oriented
Hardy implemented anywhere in full ...

...but its concepts and terminology are widely used,
when describing existing and designing new protocols ...

Distributed Systems

Network protocols & standards

051 Network Layers

2: Data Link Layer

¢ Service: Reliable transfer of frames over a link
® Functions: Synchronization, error correction, flow control

e Examples: HDLC (high level data link control protocol),
LAP-B (link access procedure, balanced),
LAP-D (link access procedure, D-channel),
LLC (link level control), ...

AT Un

Distributed Systems

Network protocols & standards

051 Network Layers

3: Network Layer

e Service: Transfer of packets inside the network
® Functions: Routing, addressing, switching, congestion control
e Examples: IP, X.25
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Network protocols & standards

051 Network Layers

4: Transport Layer

¢ Service: Transfer of data between hosts

* Functions: Connection establishment, management,
termination, flow-control, multiplexing, error detection

* Examples: TCP, UDP, ISO TPO-TP4
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Network protocols & standards

051 Network Layers

5: Session Layer

e Service: Coordination of the dialogue between application programs

® Functions: Session establishment, management, termination
* Examples: RPC
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Network protocols & standards

Network protocols & standards

051 Network Layers OSI Network Layers

Serial Peripheral Interface (SPI)

w Used by gazillions of devices ... and
it’s not even a formal standard!

Extreme PRO

> Speed only limited by what
both sides can survive. [ T

7: Application Layer

6: Presentation Layer

Usually push-pull drivers,
i.e. fast and reliable, yet not friendly to wrong
wiring/programming. -

e Service: Provision of platform independent coding and encryption e Service: Network access for application programs

® Functions: Code conversion, encryption, virtual devices * Functions: Application/OS specific

* Examples: 1SO code conversion, PGP encryption * Examples: APIs for mail, ftp, ssh, scp, discovery protocols ...

18" COLOR TFT LCD display from Adafruit
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Serial Peripheral Interface (SPI) :
Full Duplex, 4-wire, flexible clock rate — < Address and data bus >
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Network protocols & standards

User data User data
osl TCP/IP osl Osl TCP/IP AppleTalk Osl AppleTalk over IP
‘ 4 : Application Application
Rep!ication REplicatchy AppleTalk Filing Protocol (AFP) AppleTalk Filing Protocol (AFP)
1 : : Presentation frplicaticl Presentation
Presentation Presentation ] .
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Network Network
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Ethernet / IEEE 802.3
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Network protocols & standards

Ethernet / IEEE 802.3

OSl relation: PHY, MAC, MAC-client

Network protocols & standards

Ethernet / IEEE 802

OSI relation: PHY, MAC, MAC-client
Local area network (LAN) developed by Xerox in the 70"

10Mbps specification 1.0 by DEC, Intel, & Xerox in 1980.
First standard as IEEE 802.3 in 1983 (10Mbps over thick co-ax cables).

IEEE 8023
reference
mode!

currently 1Gbps (802.3ab) copper cable ports used in most desktops and laptops.
currently standards up to 100 Gbps (IEEE 802.3ba 2010).

more than 85% of current LAN lines worldwide

(according to the International Data Corporation (IDC)).

Application
Presentation o
Session Upper-iayer

protocols

Transport

Network T MAC-clent EEE B02-specc

Data ik Madia Access (MAC) IEEE 802.3-spocifq]

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Physical Physical (PHY) Media-specific
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Ethernet / IEEE 802.11

Network protocols & standards

Bluetooth

Network protocols & standards

Token Ring / IEEE 802.5 /
Fibre Distributed Data Interface (FDDI)

reless local area network (WLAN) developed in the 90's Wire local area network (WLAN) developed in the 90's with different features than 802
First standard as IEEE 802.11 in 1997 (1-2Mbps over 2.4GHz).

“Token Ring “ developed by IBM in the 70's
Lower power consumption.
Typical us:

ge at 54 Mbps over 2.4GHz carrier at 20 MHz bandwidth.

IEEE 802.5 standard is modelled after the IBM Token Ring architecture
Shorter ranges.
Current standards up t

(specifications are slightly different, but basically compatible)
0 Mbps (802.11ac) over 5 GHz carrier at 160 MHz bandwidth. Lower data rates (typically <1Mbps).

Future standards are designed for up to 100 Gbps over 60 GHz carrier.

IBM Token Ring requ ar topology as well as twisted pair cables,
Ad-hoc networking (no infrastructure required).
Direct relation to IEEE 802.3 and similar OS| layer association.

while IEEE 802.5 is unspecified in topology and medium

Fibre Distributed Data Interface combines a token ring architecture
= Combinations of 802.11 and Bluetooth OSI Iayers with a dual-ring, fibre-optical, physical network.

are possible to achieve the required features set. Unlike CSMA/CD, Token ring is deterministic
(with respect to its timing behaviour)

s Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
= Direct-Sequence Spread Spectrum (DSSS)

FDDI is deterministic and failure resistant

None of the abov

currently used in performance oriented application

pag



542
Distributed Systems _‘z -

Distributed Systems

Distributed Systems

Network protocols & standards Network protocols & standards e | Network protocols & standards
Fibre Channel Fibre Channel InfiniBand
. Mapping of Fibre Channel to OSl layers: k|
Developed in the late 80's.
ANSI standard since 1994.

User data

TCP/IP Developed in the late 90's
Current standards allow for 16 Cbps per link. e 3l i 3 Defined by the InfiniBand Trade Association (IBTA) since 1999.
Allows for three different topologies: : Current standards allow for 25Gbps per link.

Switched fabric topologies.
= Point-to-point: 2 addresses

H : : Concurrent data links possible (commonly up to 12w 300 Gbps).
w Arbitrated loop (similar to token ring): 127 addresses s deterministic, real-time capable ! d B i ' « Defines only the data-link layer and parts of the network layer.
w Switched fabric: 2** addresses, many topologies and concurrent data links possible L !

* Existing devices use copper cables (instead of optical fibres).
* Defines OSI equivalent layers up to the session level.

| - - | . 5 Mostly used in super-computers and clusters but applicable to storage arrays as well.
& Mostly used in storage arrays, h d b " w Cheaper than Ethernet or FibreChannel at high data-rates.
but applicable to super-computers and high integrity systems as well. w Small packets (only up to 4kB) and no session control.
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Distributed Systems
Distribution! What can be distributed?

Common design criteria
Motivation

* State 1= Common operations on distributed data
Possibly ...

i o . = Achieve De-coupling / high degree of local autonomy
* Function w Distributed operations on central data
... fits an existing physical distribution (e-mail system, devices in a large craft, ...).

w Cooperation rather than central control
.. high performance due to potentially high degree of parallel processing. e State & Function = Client/server clusters = Consider Reliability
.. high reliability/integrity due to redundancy of hardware and software.

... scalable.  none of those = Pure replication, redundancy w Consider Scalability
.. integration of heterogeneous devices.

i Consider Performance
Different specifications will lead to substantially different distributed designs.
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Some common phenomena in distributed systems

Distributed Systems

Distributed Systems
Time in distributed systems

‘Real-time’ clocks

are:
1. Unpredictable delays (communication) Two alternative strategies: « discrete - i.e. time is not dense and there is a minimal granularity
w Are we done yet? o drift affected:

2. Missing or imprecise time-base . . C measured tim
e Causal relation or temporal relation? Based on a shared time w= Synchronize clocks!

3. Partial failures

A 0 ’ . 1 _ Clty) —C(ty)
Based on sequence of events w= Create a virtual time! ) a+8t =
w= Likelihood of individual failures increases

Maximal clock drift § defined as:

=(1+9)

w Likelihood of complete failure decreases (in case of a good design)

often specified as PPM (Parts-Per-Million)
(typical =20 PPM in computer applications)

2020 Uwe R. Zimmer, The A 22020 Unve K. Zi 8 (chapter 3: “Distributee Sysiems” up 10 page 641)
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Distributed Systems
Synchronize a ‘real-time’ clock wi-directionan

Resetting the clock drift by regular reference time re-synchronization:

C'measured time'

Maximal clock drift § defined as:

(1+68)7 "< C(tfz :g(“) <(1+8)

‘real-time’ clock is adjusted
forwards & backwards

= Calendar time

t'realitime’

page 550 of 758 (chapter 8: “Distributed Systems” up to page 641
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Distributed critical regions with synchronized clocks

Analysis
* No deadlock, no individual starvation, no livelock.
* Minimal request delay: 2L.
* Minimal release delay: L.

¢ Communications requirements per request: 2(N — 1) messages
(can be significantly improved by employing broadcast mechanisms).

¢ Clock drifts affect fairness, but not integrity of the critical region.

Assumptions:
¢ Lis known and constant = violation leads to loss of mutual exclusion.
* No messages are lost = violation leads to loss of mutual exclusion.

©2020 Uwe R. Zimmer, The Ausiralian National University page 553 of 758 (chapter 8: “Distributed Systems’
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Synchronize a ‘real-time’ clock torward oniy)
Resetting the clock drift by regular reference time re-synchronization:

C'measured time’

Maximal clock drift § defined as:

1 _ Clty) —C(ty) _
R
‘real-time’ clock is adjusted
forwards only
= Monotonic time

trealitime’
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Virtual (logical) time [Lamport 1978]

a—-b=C)<Cb)

with a = b being a causal relation between a and b,
and C(a), C(b) are the (virtual) times associated with a and b

a — biff:
a happens earlier than b in the same sequential control-flow or
a denotes the sending event of message m,
while b denotes the receiving event of the same message m or
there is a transitive causal relation betweenaandb: a > e; > ... > e, > b

Notion of concurrency:
allb= —(a~>b)AN—(b~a)
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Distributed critical regions with synchronized clocks

¢ Vtimes:
V received Requests: Add to local RequestQueue (ordered by time)
V received Release messages:
Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.

2. Delay by 2L (L being the time it takes for a message to reach all network nodes)
3. While Top (RequestQueue) # OwnRequest: delay until new message
4. Enter and leave critical region

5.Send Release-message to all processes.

Distributed Systems

Distributed Systems
Virtual (logical) time
a—b=Ca)<Cb)
Implications:

C@<ck ="
C(a =C)="?

C(a) = C(b)<C(c)=>?
Cl@<cl)<cl)="?
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Distributed Systems
Virtual (logical) time
a~b=C)<Cb)
Implications:

C@ <C(b)= —(b~-a)
Cl@=ck)=alb

Cl@ =clb)<Clc)=7?
Cla)<cC)<Clo)=?

Distributed Systems

Distributed Systems
Virtual (logical) time
a—b=Cla<Cb)
Implications:

C@<c)=—-b-a=@@-»bV@lb)
Cl@=CcM)=allb=—=(a~b)A—(b~a)

C(a) = C(b) < C(c)=?
Cl@<c)<cl=?

Distributed Systems

Distributed Systems
Virtual (logical) time
a—- b= C(a) <C(b)
Implications:

C@<chb)=-(b-a=@-hbVlh)
Cl@=Cc)=alb=—(a>b)A—(b~ a)

C(a) = C(b) < C(c) = —(c ~ a)
C(a) < C(b) <Clc) = —(c~ a)
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Distributed Systems
Virtual (logical) time

a—b=Ca<Cb)
Implications:

C@) <C()= —(b—-a)=1(~-b)V(alb)
C(@) =C() =>allb=—(a~b)A—(b~a)

Cl@=C)<Cl=—(c»a)=(@~c)Vlc)
Cl@<ch)<Cl=—(c~a)=(~-cVilo
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Distributed Systems
Distributed critical regions with logical clocks

e V times: V received Requests:
Add to local RequestQueue (ordered by time)
Reply with Acknowledge or OwnRequest
* V times: V received Release messages:
Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.

2. Wait for Top (RequestQueue) = OwnRequest & no outstanding replies
3. Enter and leave critical region
4. Send Release-message to all processes.

we R

Distributed Systems

Distributed Systems
Virtual (logical) time

Time as derived from causal relations:

z T 7 P £y 5
& Events in concurrent control flows are not ordered.

i No global order of time.

chapter 8: “Disributed Systems” up.
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Distributed critical regions with logical clocks

Analysis
¢ No deadlock, no individual starvation, no livelock.
¢ Minimal request delay: N — 1 requests (1 broadcast) + N — 1 replies.
* Minimal release delay: N — 1 release messages (or 1 broadcast).

e Communications requirements per request: 3(N — 1) messages
(or N —1 messages + 2 broadcasts).

¢ Clocks are kept recent by the exchanged messages themselves.

Assumptions:
* No messages are lost = violation leads to stall.

Distributed Systems

Distributed Systems
Implementing a virtual (logical) time

1.VP:C; =0

2.VP;:
Vlocal events: C; = C; +1;
V send events: C; = C; +1; Send (message, C));
V receive events: Receive (message, C,,,); C; = max(C;,C,,) +1;

|
]
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Distributed Systems
Distributed critical regions with a token ring structure

1. Organize all processes in a logical or physical ring topology
2.Send one token message to one process

3.V times, Vprocesses: On receiving the token message:
1. If required the process
enters and leaves a critical section (while holding the token).
2. The token is passed along to the next process in the ring.

Assumptions:
¢ Token is not lost sz violation leads to stall.
(a lost token can be recovered by a number of means - e.g. the ‘election’ scheme following;

a i pag
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Distributed Systems
Distributed critical regions with a central coordinator

A global, static, central coordinator
w Invalidates the idea of a distributed system
i Enables a very simple mutual exclusion scheme
Therefore:

* A global, central coordinator is employed in some systems ... yet ...
e ... if it fails, a system to come up with a new coordinator is provided.

Distributed Systems

Distributed Systems
Electing a central coordinator (the Bully algorithm)
Any process P which notices that the central coordinator is gone, performs:

1. P sends an Election-message
to all processes with higher process numbers.

2. P waits for response messages.

= If no one responds after a pre-defined amount of time:
P declares itself the new coordinator and sends out a Coordinator-message to all.

w If any process responds,
then the election activity for P is over and P waits for a Coordinator-message

All processes P; perform at all times:

o If P; receives a Election-message from a process with
a lower process number, it responds to the originating process
and starts an election process itself (if not running already).

92020 Une K. Austealian National University 6 of 753 (chaper 5 “Distributed Sysiems” up [0 page 641)
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Distributed Systems
Distributed states

w How to read the current state of a distributed system?

30 35 40

This “god’s eye view” does in fact not exist.

Uwe R. Zimmer, The Ausialian National
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Distributed Systems
Distributed states Distributed states
> How to read the current state of a distributed system? 1> How to read the current state of a distributed system?

A consistent global state (snapshot) is define by a unique division into:
35 ALEl El | : Ol 30 ﬁ !=
%’ 35 | 36 f 37 "2

I IE E AN % g 5 0 [ 5 ¥ 3 B 5
Instead: some entity probes and collects local states. Instead: some entity probes and collects local states. * “The Future” F (events after the snapshot):
1= What state of the global system has been accumulated? 1 What state of the global system has been accumulated?

(eq€ERNN(eg~e)=e EF
1 Connecting all the states to a global state.

* “The Past” P (events before the snapshot):

(e €EP)A (e~ e) > e EP
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Distributed Systems
Distributed states Snapshot algorithm
w How to read the current state of a distributed system? = How to read the current state of a distributed system?

Observer-process P, (any process) creates a snapshot token t; and saves its local state 5.
Py sends t, to all other processes.
\/ P; which receive t, (as an individual token-message, or as part of another message):
3 % 1 * Save local state s; and send s; to Py,

= c > . 7 ¢ Attach ¢ to all further messages, which are to be sent to other processes.
3 0 is ) % B 3 & i
. . * Save t; and ignore all further incoming t's.
Instead: some entity probes and collects local states. Instead: some entity probes and collects local states.
1= What state of the global system has been accumulated? 1 What state of the global system has been accumulated?

w Sorting the events into past and future events.

7/ P; which previously received t; and receive a message m without t:
w Event in the past receives a message from the future!
Division not possible i Snapshot inconsistent!

ibuted Systems” up to page 641

* Forward m to P (this message belongs to the snapshot).

©2020 Uwe . Zimmer, The Austalian N
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Distributed Systems Distributed Systems Distributed Systems
Distributed Systems Distributed Systems Distributed Systems
Distributed states Distributed states Distributed states
= Running the snapshot algorithm: wr Running the snapshot algorithm:

= Running the snapshot algorithm:

* Observer-process Py (any process) creates a snapshot token t; and saves its local state s. * VP;which receive t (as an individual token-message, or as part of another message): * /P;which previously received t, and receive a message m without t:
¢ Pysends t to all other processes. * Save local state s; and send s; to Py « Forward m to P (this message belongs to the snapshot).

* Attach ¢ to all further messages, which are to be sent to other processes.

* Save t; and ignore all further incoming t's.

22020 Unve K. Zi
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Distributed Systems
Distributed states

w Running the snapshot algorithm:

¢ VP;which receive t, (as an individual token-message, or as part of another message):

¢ Save local state s; and send s; to Py
¢ Attach t to all further messages, which are to be sent to other processes.
* Save t; and ignore all further incoming t's.

e 8 “Distributed Systems”

Distributed Systems

Distributed Systems
Distributed states

1 Running the snapshot algorithm:

1w Sorting the events into past and future events.

i Past and future events uniquely separated i Consistent state

Distributed Systems

Distributed Systems
A distributed server (load balancing)

immer, The Australian Nations

Distributed Systems

Distributed Systems
Distributed states

= Running the snapshot algorithm:

 Savet and ignore all further incoming t,'s.

page 578 of 758 (chapter 8: “Distributed Systems
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Distributed Systems
Snapshot algorithm

Termination condition?

Either

* Make assumptions about the communication delays in the system.

¢ Count the sent and received messages for each process (include this in the lo-
cal state) and keep track of outstanding messages in the observer process.

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Ring of servers

Austealian National University
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Distributed Systems
Distributed states

i Running the snapshot algorithm:

>
P 35 vl o za 37 3 |

¥ —
o ekl E9 EA B
=TT
- N

* Finalize snapshot

Distributed Systems

Distributed Systems
Consistent distributed states
Why would we need that?
* Find deadlocks.
* Find termination / completion conditions.
e ... any other global safety of liveness property.
¢ Collect a consistent system state for system backup/restore.

e Collect a consistent system state for further pro-
cessing (e.g. distributed databases).

Distributed Systems
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A distributed server (load balancing)

Send_To_
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Distributed Systems
A distributed server (load balancing)

Contention
messages

Distributed Systems

Distributed Systems
A distributed server (load balancing)

task body Print_Server is
begin
loop
select
accept Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean) do
if not Print_Job in Turned_Down_Jobs then
if Not_Too_Busy then
Applied_For_Jobs := Applied_For_Jobs + Print_Job;
Print_Job
requeue
else
Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
end if;
end if;
end Send_To_Server;
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A distributed server (load balancing)

Job.

er 8 “Distributed Systems* up [0 page
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accept Contention (Print_Job : in Job_Type; Server_Id : in Task_Id) do
if Print_Job in AppliedForJobs then
if Server_Id = Current_Task then
(Print_Job);
elsif Server_Id > Current_Task then
(Print_Job);
(Print_Job; Server_Id);
else
null; -- removing the contention message from ring
end if;
else
Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
(Print_Job; Server_Id);
end if;
end Contention;
or
terminate;
end select;
end loop;
end Print_Server;
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A distributed server (load balancing)

with Ada.Task_Identification; use Ada.Task_Identification;
task type Print_Server is

entry Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean);
entry Contention (Print_Job : in Job_Type; Server_Id : in Task_Id);

end Print_Server;

Distributed Systems

Distributed Systems
Transactions

= Concurrency and distribution in systems
with multiple, interdependent interactions?

w Concurrent and distributed
client/server interactions
beyond single remote procedure calls?

we R. Zimmer, The Ausiralian National University page 591 of 758 (chapter 5: “Distributed Systems” up to page 641,
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Transactions

Definition (ACID properties):

* Atomicity: All or none of the sub-operations are performed.
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible
to roll back the system to the state before the transaction was invoked.
Consistency: Transforms the system from one consistent state to another consistent state.
Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object,
invocation does not interfere with other operations on the same object.
Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

2020 Unve K. Zimmer, The Australian National Universty a 58 (chapier buted Sysiens” up to page 641
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Distributed Systems
Transactions

|
. . Atomic operatlons N e
Definition (ACID properties): | | spanning ng multiple le processes? | | r How to ensure consmuncy

| ina adls(nbuleds stel m
* Atomicity: All or none of the sub-operations are performed L 15T <

Atomicity helps achieve crash resilience. If a crash occurs, then it is posslble
to roll back the system to the state before the transaction was invoked.

¢ Consistency: Transforms the system from one consistent state to another consistent state.

« Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object, .
invocation does not interfere with other operations on the same object. rShadOW copies
i AP

* Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

— e Actual \solanon and L ————
What hardware do W efficient concurrency?  Actual isolation or the
need t0. assume? " appearance of isolation? J
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Distributed Systems
Transactions

A closer look inside transactions:

Transactions consist of a sequence of operations.

If two operations out of two transactions can be performed in any order with the
same final effect, they are commutative and not critical for our purposes.

Idempotent and side-effect free operations are by definition commutative.
All non-commutative operations are considered critical operations.

Two critical operations as part of two different transactions while
affecting the same object are called a conflicting pair of operations.

2020 Uwe R. Zimmer, The Austraian National Universiy page 594 of 758 (chapt uted Systems” up to page 641
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Distributed Systems
Transactions

A closer look at multiple transactions:

* Any sequential execution of multiple transactions
will fulfil the ACID-properties, by definition of a single transaction.

* A concurrent execution (or ‘interleavings’) of multiple transactions
might fulfil the ACID-properties.

w If a specific concurrent execution can be shown to be equivalent to a specific sequential
execution of the involved transactions then this specific interleaving is called ‘serializable’.

w If a concurrent execution (‘interleaving’) ensures that no transaction ever encounters
an inconsistent state then it is said to ensure the appearance of isolation.

758 (chapter 8: “Distributed Systems” up to page 641)
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Distributed Systems
Serializability

wr Serializable

©2020 Uwe R. Zimmer, The Ausiralian National University 58 (chapier 5: “Distributed Systems” up to page 641,
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Achieving serializability

i For the serializability of two transactions it is necessary and sufficient
for the order of their invocations
of all conflicting pairs of operations to be the same
for all the objects which are invoked by both transactions.

(Determining order in distributed systems requires logical clocks.)

©2020 Uwe . Zimmer, The Au 8 “Distributed Systems” up 1o pag
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Serializability

Order

Wiice (8) I

* Two conflicting pairs of operations with different orders of executions.

= Not serializable.
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Distributed Systems
Serializability

Order

Two conflicting pairs of operations with the same order of execution.

©2020 Uwe R. Zimmer, The Ausiralian National University
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[OB]  Vrite (A)

Distributed Systems
Serializability

Order

Read (C) [l Write (B)

* Three conflicting pairs of operations with the same order of execution

(pair-wise between processes).

¢ The order between processes also leads to a global order of processes.

©2020 Uwe R. Zimmer, The Ausiralian National University
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Distributed Systems
Serializability

Order

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

¢ The order between processes also leads to a global order of processes.

w Serializable

page 601 of 758 (chapter 8
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Distributed Systems
Serializability

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

* The order between processes also leads to a global order of processes.

i Serializable
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Serializability

Py

Order

—Read (©) Werite (B)
S Virie (5 I

* Three conflicting pairs of operations with the same order of execution

(pair-wise between processes).

¢ The order between processes does no longer lead to a global order of processes.

wr Not serializable

page 603 o 7
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Achieving serializability

i For the serializability of two transactions it is necessary and sufficient
for the order of their invocations
of all conflicting pairs of operations to be the same
for all the objects which are invoked by both transactions.

 Define: Serialization graph: A directed graph;
Vertices i represent transactions T;;
Edges T; — T represent an established global order dependency
between all conflicting pairs of operations of those two transactions.

i For the serializability of multiple transactions it is
necessary and sufficient
that the serialization graph is acyclic.
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Distributed Systems
Transaction schedulers

Three major designs:

* Locking methods:
Impose strict mutual exclusion on all critical sections.

¢ Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

¢ “Optimistic” methods:
Go ahead until a conflict is observed - then roll back.
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Distributed Systems
Serializability

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

i Serialization graph is acyclic.

& Serializable
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Transaction schedulers — Locking methods

Locking methods include the possibility of deadlocks = careful from here on out ...

e Complete resource allocation before the start and release at the end of every transaction:
w This will impose a strict sequential execution of all critical transactions.

« (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

¢ Growing phase: locks can be acquired, but not released.

* Shrinking phase: locks can be released anytime, but not acquired (two phase locking)
or locks are released on commit only (strict two phase locking).

& Possible deadlocks

w Serializable interleavings

& Strict isolation (in case of strict two-phase locking)

Semantic locking: Allow for separate read-only and write-locks

w Higher level of concurrency (see also: use of functions in protected objects)
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Serializability

Order

£ Write (C)

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

w Serialization graph is cyclic.
= Not serializable
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Distributed Systems
Transaction schedulers — Time stamp ordering

Add a unique time-stamp (any global order criterion) on every transaction upon start.
Each involved object can inspect the time-stamps of all requesting transactions.

* Case 1: A transaction with a time-stamp /ater than all currently active transactions applies:
w the request is accepted and the transaction can go ahead.
* Alternative case 1 (strict time-stamp ordering):
= the request is delayed until the currently active earlier transaction has committed.
* Case 2: A transaction with a time-stamp earlier than all currently active transactions applies:
& the request is not accepted and the applying transaction is to be aborted.

w Collision detection rather than collision avoidance
& No isolation e Cascading aborts possible.
w Simple implementation, high degree of concurrency
—also in a distributed environment, as long as a global event order (time) can be supplied.
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Transaction schedulers — Optimistic control

Three sequential phases:

1. Read & execute:
Create a shadow copy of all involved objects and
perform all required operations on the shadow copy and locally (i.e. in isolation).

2. Validate:
After local commit, check all occurred interleavings for serializability.

3. Update or abort:

3a. If serializability could be ensured in step 2 then all results of involved transactions
are written to all involved objects - in dependency order of the transactions.
3b. Otherwise: destroy shadow copies and start over with the failed transactions.

page 610 o1 758 (chapier 5
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Transaction schedulers — Optimistic control

Three sequential phases: [ p
How to create a consiste | . N
| - Full isolation and

maximal concurrency!

mcopy?‘ —_—
. Read & execute: — -
Create a shadow copy of all involved objects and -
perform all required operations on the shadow copy and locally (i.e. in isolation).
. Validate:

After local commit, check all occurred interleavings for serializability.

. Update or abort: How to update all objects consistently?
3a. If serializability could be ensured in step 2 then all résults of INVOIVed transactions™
are written to all involved objects — in dependency order of the transactions.
3b. Otherwise: destroy shadow copies and start over with the failed transactions.

[ Aborts happen after everything
has been committed locally. |

page 611 of 758 (chapter 5: “Disiributed Systems* up 10 pa

Distributed Systems

Distributed Systems
Distributed transaction schedulers
Three major designs:

¢ Locking methods:
Impose strict mutual exclusion on all critical sections.

¢ Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

¢ “Optimistic” methods:
Go ahead until a conflict is observed — then roll back.

1> How to implement “ "and " operations
in a distributed environment?

page 61207758
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Distributed Systems Distributed Systems

Distributed Systems

Distributed Systems

Two phase commit protocol Two phase commit protocol Two phase commit protocol

Start up (initialization) phase Start up (initialization) phase Start up (initialization) phase

Data

Determine

Ring of servers N
s coordinator

Server

Distributed

Transaction
Server

617
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Distributed Systems Distributed Systems Distributed Systems
Two phase commit protocol Two phase commit protocol Two phase commit protocol

Start up (initialization) phase Start up (initialization) phase Start up (initialization) phase

- P

@ Determine Setup & Start Setup & Start
coordinator operations operations

DL @

Distributed Syste Distributed Systems Distributed Systems

Distributed Systems Distributed Systems Distributed Systems
Two phase commit protocol Two phase commit protocol Two phase commit protocol

Phase 1: Determine result state Phase 2: Implement results Phase 2: Implement results

Coordinator requests
and assembles votes:
"Commit" or "Abort"

Coordinator instructs

0" "
everybody to "Commi Server

Server
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- Distributed Systems

Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 2: Implement results

Two phase commit protocol

Phase 2: Implement results
@ Everybody reports
"Committed" @

Two phase commit protocol
or Phase 2: Global roll back

Coordinator instructs

|
everybody to "Abort" @

Everybody destroys
shadows

- Distributed Systen

Distributed Systems
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Distributed Systems

Distributed Systems Distributed Systems

Two phase commit protocol Distributed transaction schedulers

or Phase 2: Global roll back

Everybody destroys
shadows

Two phase commit protocol

Phase 2: Report result of distributed transaction

Coordinator reports toclient: @ g w

"Committed" or"Aborted"

Evaluating the three major design methods in a distributed environment:

¢ Locking method No aborts.
Large overheads; Deadlock detection/prevention required.

e Time-stamp orderin Potential aborts along the way.
Recommends itself for distributed applications, since decisions
are taken locally and communication overhead is relatively small.

¢ “Optimistic” method: orts or commits at the very end.
Maximizes concurrency, but also data replication.

Distributed Systen Distributed Systems Distributed Systen

Distributed Systems Distributed Systems Distributed Systems

Redundancy (replicated servers) Redundancy (replicated servers) Redundancy (replicated servers)

Premise: initialization) ph

A crashing server computer should not compromise the functionality of the system Stages of each server:
(full fault tolerance)
Assumptions & Means:

* k computers inside the server cluster might crash without losing functionality. Job message received by-all active servers

Received Deliverable
* The server cluster can reorganize any time (and specifically after the loss of a computer). - i r

Job processed locally

Job message received locally
¢ The server is described fully by the current state and the sequence of messages received. -
K Processed
wr State machines: we have to implement consistent state adjustments (re-organization)

and consistent message passing (order needs to be preserved).

Ring of identical
servers

w Hot stand-by components, dynamic server group management.

[Schneider199
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Distributed Systems
Redundancy (replicated servers)

Start-up (initialization) phase

Determine

coordinator @

Distributed Systems

Distributed Systems

Coordinator sends
job both ways

Distributed Syste

Distributed Systems
Redundancy (replicated servers)

eside

All server detect
two job-messages
= everybody
processes job

632
_L'"‘ - Distributed Systems

Distributed Systems
Redundancy

Start-up (initializat

Coordinator
determined

635
_L'"‘ - Distributed Systems
Distributed Systems

Redundancy (replicated servers)
istribute jo

Everybody received job
(but nobody
knows that)

Distributed Systems

Distributed Systems

Redundancy (replicated servers)

rdinator processes

Coordinator also
received two messages
and processes job

- Distributed Systems

Distributed Systems

Send Job

s Distributed Systems

Distributed Systems

Redundancy (replicated servers)
ing start

First server detects
two job-messages
5 processes job

Distributed Systems

Distributed Systems
Redundancy (replicated servers)

Coordinator delivers
his local result
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Distributed Systems
Redundancy (replicated servers)

Distributed Systems

Summary

Distributed Systems

Event: Server crash, new servers joining, or current servers leaving. Networks

e OS5, tc

. S Practical network standards
Server re-configuration is triggered by a message to all * Practicalnetwork standards
(this is assumed to be supported by the distributed operating system). e Time

¢ Synchronized clocks, virtual (logical) times

Each server on reception of a re-configuration message:
e Distributed critical regions (synchronized, logical, token ring)
. Wait for local job to complete or time-o
Store local consistent state S;.

¢ Distributed systems

3. Re-organize server ring, send local state around the ring. * Elections

. If a state 5/ with j > iis received then S Distributed states, consistent snapshots
. Elect coordinator Distributed servers (replicates, distributed process

Transactions (ACID properti rializable interlea

g, distributed commits)
6. Enter ‘Coordinator-’ or ‘Replicate-mode’

gs, transaction schedulers)
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Architectures Architectures Architectures

Abstraction Layer Form of concurrenc Logic - the basic building blocks Logic - the basic building blocks for digital computers
Controllable Switches & Ratios - Constructing logic gates - for instance NAND in CMOS:

as transistors, relays, vacuum tubes, valves, etc. L
[\

ta
Operating system OS processes/threads, signals, events, . Sl

Z [ -
(HAL, processes, virtual memory) multitasking, SMP, virtual parallel machines,... W R L L,
. . = = _ [ First transistor 47\ oS

CPU / instruction level Logically sequential: pif out-of-order, etc. .= : L | John Bardeen and Walter Brattain 1947
(assembly instructions) logically concurrent: multicores, interrupts, etc. -

Device / register level Parallel adders, SIMD, multiple execution units, : —— o
(arithmetic units, registers,...) caches, prefetch, branch prediction, etc. : i . . ‘
I.Ogic gates Inherently massively parallel, =i B ; 3 L il NMOS
(‘and’, ‘or’, ‘not, flip-flop, etc.) synchronised by clock; or: asynchronous logic y LA, i A
Digital circuitry
(gates, buses, clocks, etc.)
¥ Antikythera Mechanis!

AnaIOg circuitry . . Continuous time and inherently concurrent . | Greek 150-100BC
(transistors, capacitors, ...) ¢ WIKIPEDL

Multiple clocks, peripheral hardware, memory, ...

Difference Engine |
Charles Babbage 1822 |

Architectures Architectures Architectures

Logic - the basic building blocks for digital computers Logic - the basic building blocks Logic - the basic building blocks
Constructing logic gates — for instance NAND in CMOS: Half adder: Full adder:

| Basic Flip-Flops

L

NMOS
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Logic - the basic building blocks
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Program

—

Architectures

Interrupt processing

Interrupt handler

..z PC>Push registers
Declare local variables
Stack | 4D ;

SP-> i
Local
varisbles
I Registers

et

Gl arabes

We successtully interrupted

a sequence of operations ...

Code management

o -
Registers
s»

Data management

Program

Architectures

Processor Architectures

A simple CPU

Decoder/Sequencer

Can be a machine in itself which breaks CPU
instructions into concurrent micro code.
Execution Unit/ Arithmetic-Logic-Unit (ALU)
A collection of transformational logic.
Memory

Registers

Instruction pointer, stack pointer,

Indicating the states of the
latest calculatiol
Code/Data management
Fetching, Caching, Storing

Architectures

Interrupt processing

Interrupt handler

Paameters

[E——

Program

Architectures

Interrupt processing

Interrupt handler

Push registers

stack ; 4

[ PP —

["Registers

Loclvarbles

Pumees

- ——
[

Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code ..

Architectures

Code management

Processor Architectures

Interrupts

r multiple li
directly into the sequencer
Required for:
Pre-emptive scheduling, Timer driven actions,
Transient hardwar

Usually preceded by an e
(“interrupt controller
lates and encodes all external requests.

On interrupt (if unmasked):

CPU stops normal sequencer flow.
Lookup of interrupt handler’s address
Current IP and state pushed onto stack.

IP set to interrupt handler.

Architectures

Program

Stack | @

P>

Local artles

e PC‘* o

Interrupt processing
Interrupt handler

Program

Architectures

Interrupt processing
Interrupt handler

Push registers

Stack | 4

P> Tt |

=

Paametrs

Gl arsbes

Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code
PC > Remove local variables
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Interrupt processing
Interrupt handler

Program Push registers

Declare local variables
Stack Run handler code
h . do some I/0 ..
. or run some time
critical code ..
Remove local variables
> Pop registers

Architectures

Interrupt processing
Interrupt handler

Program

Stack | @

R

Local artles

et

[

Architectures

Interrupt processing
Interrupt handler

Stack

Program __—pc>{Push registers
- Declare local variables

S Local

variables
Registers
Flags
- PC 4
Localartles

Paameters

Gl arabes

Program

Architectures

Interrupt processing
Interrupt handler

Push registers

Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code ..
Remove local variables
>|Pop registers

Bahia Honda Rall Bridge (Creative Common

Program

e PC*@

ShareAlike 3.0, Photography by MrX a Englisy

Architectures

Interrupt processing
Interrupt handler

stack ;4D

- SP>| Flags
T

Loclvrbles

Puameers

[Ep—

Program

Program

Stack | @

Architectures

Interrupt processing
Interrupt handler

Push registers

| |Declare local variables
G Run handler code
. do some I/0 ..
. or run some time
critical code ..

Stack

- sp>
Local
varisbles
veriables |
Registers
Pags
Pe

Loclvarbles

Lol vrbies

Pumees

[

e PO

Architectures

Interrupt processing
Interrupt handler

The CPU
hardware (1)
did that,

was changed

Program

before anything “

Architectures

Interrupt processing
Interrupt handler

Push registers

Stack | 4

S T

'TE
e 1

F

Gl v |

Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code ..
> Remove local variables
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Interrupt processing
Interrupt handler

Program Push registers

Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code ..
Remove local variables
> Pop registers

FP >W o N

f—

Gl vrisbes
Base >

T page 669 of 758 (chapter 9: “Architectures

Program

Stack

£

S—

Architectures

Interrupt processing

Interrupt handler

Push registers
Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code ..

Architectures

Interrupt processing
Interrupt handler

Program

Gl vrisbes
Base >t
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Architectures

Interrupt processing
Interrupt handler

Architectures

Interrupt processing
Interrupt handler

Architectures

Interrupt processing
Interrupt handler
e — Program Clear interrupt flag

Stack
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Architectures

Interrupt processing
Interrupt handler

Program Clear interrupt flag

(Adjust priorities)
(Re-enable interrupt)
Push other registers
e Declare local variables
varigbles | PC > Run handler code
. do some 1/0 ..
. or run some time
critical code ..

i}
Registers

1 tocal ol
et

ariabes

Stack

-~

S
Scratch
registers
Flags
i

Loclvrbles

Lol vraies

[ Rt s

Puameers

Gl

_—PC>{Clear interrupt flag
A )

ust prio
e-enable in

Program

S
Scratch
registers

Flags
e

Loclvarbles

Lol vrbies

=

Pumees

[

Architectures

Interrupt processing

Interrupt handler

Clear interrupt flag
(Adjust priorities)
(Re-enable interrupt)
Push other registers
Declare local variables
Run handler code
. do some 1/0 ..
. or run some time
critical code ..
Remove local variables
»|Pop other registers

i | (adjust priorities)
Stack ! @ (Re-enable interrupt)
I |Push other registers
P> ¢ » Declare local variables

Leeal
wrisles

Architectures

Interrupt processing
Interrupt handler

Program Clear interrupt flag

(Adjust priorities)
(Re-enable interrupt)
Push other registers
Declare local variables
Run handler code

. do some I/0 ..

. or run some time

critical code ..

Remove local variables
Pop other registers
Return ("bx 1r")

Gl arsbes
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Architectures Architectures — Architectures
Interrupt processing

Interrupt handler Interrupt handler
Interrupt handler
Clesteinteriunt Things to consider Things to consider
Stack ! @ \:H(Juw;h}lw \”Lr"rj;’)t\,
: Push other registers

e i Interrupt handler code can be interrupted as well.
Declare local variables
Run handler code

. do some 1/0 .. Are you allowing to interrupt an interrupt handler with an
. or run some tine

Are you allowing to interrupt an interrupt handler with an
nterrupt on the same priority level (e.g. the same interrupt)? interrupt on the same priority level (e.g. the same interrupt)?
> Can you overrun a stack with interrupt handlers? i Can you overrun a stack with interrupt handlers?

Program

i Interrupt handler code can be interrupted as well.

Can we have one of those?

Architectures

Multiple programs

Architectures L Architectures

Context switch Context switch
Dispatcher
If we can execute interrupt handler code

Dispatcher
Process 1 Process 2 Process 1
“concurrently” to our “main” program: PCB

- Process 2
PCB g ) ) ) m—
Can we then also have multiple “main” programs?

PCB
s s s |
Code Stack £H

e —
Code Stack S Sta Code Stack G
Context- | " Context-
PC > : Registers |
5P, —rre— —ae
FP > = = _‘
Base- Base. dase Lo epi——— 1

Architectures __ Architectures

_ Architectures

Context switch Context switch Context switch
Dispatcher Dispatcher
Push registers Process 2

Process 1

Dispatcher
Process 1 Brcie Process 2
PCB

Process 1 R Process 2
PCB | |Declare local variables

PCB PCB i |Declare local variables
_ P
i O S —) [PET———
Code Stack .

PCB
I |store SP to PCB 1
el — pC >{ Scheduler i s i |
Code Stack VN Code Stack o Code Stack 'S C Stack | Code Stack VN
Context- SP I~ Context: Context:
switch- switch-
variables variables

PCB p¢ »|Declare local variables

Registers

Registers
Flogs
PC

Loclvarbles

Puameters

Pumees
Gloal v |

Pumetes
Gl ariates [

Gobalarbls

Gloal v |
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Process 1

Context switch
Dispatcher

Push registers

PCB

Code Stack G

| Context-

Declare local variables
Store SP to PCB 1
Scheduler

,|Load SP from PCB 2

Process 2

PCB

Code Stack 'S

P " Context-
switch-

Process 1

»|Remove local variables

Architectures

Context switch

Dispatcher

Push registers Process 2

Declare local variables
Store SP to PCB 1
Scheduler

Load SP from PCB 2

Architectures

Process 1

Context switch
Dispatcher

Push registers

PCB

Code Stack

Declare local variables
Store SP to PCB 1
Scheduler

Load SP from PCB 2
Remove local variables

Process 2

PCB
Code Stack 'S

H ;- Pop registers
variables va e:
Registers

Loca sl

Local variables. i Local varisbles. o

R,

P Puamtes

P

Gl vrisbes

[ [

[ERN— | Glotat vl |
Base»
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Architectures

Context switch
Dispatcher

Architectures

Architectures

Processor Architectures Processor Architectures

Process 1 R Process 2
Declare local variables bCB

Scheduler
Load SP from PCB 2 Code Stack

Pipeline
Code management| |« || |

Parallel pipelines

Code management
Some CPU actions are naturally sequential
(e.g. instructions need to be first loaded, then
decoded before they can be executed).

Filling parallel pipelines
(by alternating incoming commands between
pipelines) may employ multiple ALU’s.

[Sequencer |

More fine grained sequences can
be introduced by breaking CPU

instructions into micro code. . . .

= Interdependencies might limit

|t | s Overlapping those sequences in time the degree of concurrency.

CIES e i) will lead to the concept of pipelines.

ww (Conditional) branches might
again break the pipelines.

Same latency, yet even higher throughput.

] ame latency, yet higher throughput.

nuH( Conditional) branches

might break the pipelines
orameers Pt w Branch predictors become essential.

= Compilers need to be aware of the options.

Gl v | [t

[T ——————
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rchitectures

Architectures

Processor Architectures Processor Architectures

SIMD ALU units

Provides the facility to apply the same in-
struction to multiple data concurrently.
iencer Also referred to as “vector units”.

Processor Architectures

—— Out of order execution e Hyper-threading

Breaking the sequence inside each pipe-
- line leads to ‘out of order’ CPU designs. Decoder

[ Seaencer

Emulates multiple virtual CPU cores
by means of replication of:

= Replace pipelines with hardware scheduler.

Register sets

i Results need to be
“re-sequentialized” or possibly discarded.

Examples: Altivec, MMX, SSE[23[4], ... Sequencer

3 o . Flags
Requires specialized compilers .
F B Interrupt logic
or programming languages with R K &
implicit concurrency. while keeping the “expensive” resources
like the ALU central yet accessible by
multiple hyper-threads concurrently.

s ditional branch prediction” executes
the most likely branch or multiple branches.

= Works better if the presented code
sequence has more independent
instructions and fewer conditional branches.

GPU processing
w This hardware will require (extensive)

= Requires programming languages with
code optimization to be fully utilized.

phics processor as a vector unit. implicit or explicit concurrency.
Unifying architecture languages are Examples: Intel Pentium 4, Core i5/i7, Xeon,
used (Open UDA, GPGPU). Atom, Sun UltraSPARC T2 (8 threads per core)

9: “Architectures” up 1 p al University
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Architectures

Architectures

Alternative Processor Architectures: Parallax Propeller

Processor Architectures

Processor Architectures
Virtual memory

Multi-core CPUs
Translates logical memory addresses
into physical memory addresses

Full replication of multiple CPU cores
and provides memory protection features.

on the same chip package.

¢ Does not introduce concurrency by itself.

w |s still essential for concurrent programming
as hardware memory protection
guarantees memory integrity for
individual processes / threads.

¢ Often combined with hyper-thread-
ing and/or multiple other means (as
introduced above) on each core.

¢ Cleanest and most explicit implementation
of concurrency on the CPU level.

== Requires synchronized atomic operations.

.l Physical memory ll

ww Requires programming languages with
implicit or explicit concurrency.

Historically the introduction of multi-core
CPUs ended the “GHz race” in the early 2000's.
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Architectures

Architectures

Architectures

Multi-CPU systems

Alternative Processor Architectures: Parallax Propeller (2006) Alternative Processor Architectures: IBM Cell processor (2001)

o e P :
»J_‘ | 8 cores with 2kB local memory L‘\._'%_ﬂ LEI.-%I
E eEY AIAREY A (-|I|||.|. 1 ¥ il

. Jof=sl b=l B : Scaling up:
8 cores for specialized high-
bandwidth floating point
operations and 128 bit registers |
= i R W onE

¢ Multi-CPU on the same memory
I Tis multiple CPUs on same motherboard and mem-
| (heorii; 25.6 GFLOPS ory bus, e.g. servers, workstations

Multi-CPU with high-speed interconnects
various supercomputer architectures, e.g. Cray XE6:
* 12-core AMD Opteron, up to 192 per cabinet (2304 cores)
¢ 3D torus interconnect (160GB/sec cap-
acity, 48 ports per node)

Cluster computer (Multi-CPU over network)
multiple computers connected by network interface,

40kB shared memory
1 - ] —1

ores
! e.g. Sun Constellation Cluster at ANU:
* 1492 nodes, each: 2x Quad core Intel Nehalem, 24 GB RAM

No interrupts!
* QDR Infiniband network, 2.6 GB/sec

©2020 Uwe R. Zimmer, The Australian National U apter 9 “Architectures’ ©2020 Uwe . Zimmer, The Au page 700 of 7 Architectures” up 10 page 746)
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Vector Machines

— Vector Machines

a

wW=a-

Vector Machines

Vectorization

X a- X r

4 a*z

‘ Buzzword collection:
AltiVec, SPE, MMX, SSE,
NEON, SPU, AVX, ...

Translates into ‘

a- X
a-y
z a‘z

Vectorization

| Function is |

X1
V1= V2= (Y
Zq

Reduction

X2
Y2 |= (X1 = X)) AN (y1 =
23

Y2) N (Z1 = 72)

yi=lavy . [

‘ CPU-level vector operations |
. | “promoted” |
JPR— type Real is digits 15;
type Vectors is array (Positive range <>) of Real;

Vectors) return Boolean is

const Index = {1 .. 100000000},
Vector_1 : [Index] real = 1.0,

Scale  : real = 5.1,

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;
function ”=" (Vector_1, Vector_2 :

: Vectors) return Vectors is

function Scale (Scalar : Real; Vector

Scaled_Vector : Vectors (Vector’Range);
begin
for i in Vector’Range loop
Scaled_Vector (i) := Scalar * Vector (i); [
end loop;
return Scaled_Vector;
end Scale;

Combined with
in-lining, loop unrolling and caching

this is as fast as a single CPU will g
|

Scaled : [Vector] real = Scale * Vector_1;

©2020 Uwe R. Zimmer, The Australian Nationa

r

Translates into CPU-level vector operations ‘
as well as multi-core or
fully distributed operations

page 703 of 758 (chapier 9: “Architectures” up 10 pa

(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Translates into
CPU-level vector operations

L e ~§

r .
A-chain is evaluated lazy sequentlallﬂ
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Vector Machines Vector Machines Vector Machines

—
Reduction > General Data-parallelism > General Data-parallelism

X3 WOM ﬂﬂﬂa&‘e,f o ITanelalE |6 Jic Cellular automaton transitions from a state into the next state ”:
=2 =)A= )N (BT ) M Translates into CPU-level vector operations > eV € : - "= (,)ieallcellsofastate
Zy — 4 ‘ as well as multi-core or transition concurrently into new cells by following a rule .

const Index = {1 .. 1000000003, | A-operations are fully distributed operations =tk Next_State = forall World_Indices in World do Rule (State, World_Indices);
Vector_1, Vector_2 : [Index] real = 1.0; ‘ | I - Y m ' v A m A

proc Equal (v1, v2) : bool evalL.Ja.ted in a concurrent John Conway’s Game of Life rule:
{return 8& reduce (vl == v2);} divide-and-conquer ‘ i proc Rule (S, (i, j) : index (World)) : Cell {
(binary tree) strLL(:tuEe. | const Population : index ({0 .. 9}) =
r— . - const Mask : [1 .. 3, 1 .. 3] real = (@, -1, 0, (-1, 5, -1, (@, -1, 0)); + reduce Count (Cell.Alive, S [i -1 .. i+1, j-1.. j+11);
——— | | Translates into CPU-level vector operations proc Unsharp_Mask (P, (i, j) : index (Image)) : real return (if Population == 3
| f“““i""l'f,, i as well as multi-core or {return + reduce (Mask * P [i -1 .. 1+ 1, 3-1.. 3+11);} Il (Population == 4 8 S [i, j] == Cell.Alive) then Cell.Alive
| “promoted” | fully distributed operations const Sharpened_Picture = forall px in Inage do Unsharp_Mask (Picture, px); else Cell.Dead);
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Operating Systems What is an operating system? What is an operating system?

1. A virtual machine! 1. A virtual machine!

hat is an in m? " . . .
LD e A ... offering a more comfortable and safer environment ... offering a more comfortable and safer environment

- - _”' Nirohme
environment

Hardware Hardware Hardware

Typ. general OS Typ. real-time system Typ. embedded system

(e.g. memory protection, hardware abstraction, multitasking, ...)
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Architectures Architectures 2 Architectures

What is an operating system? What is an operating system? The evolution of operating systems

in the beginning: single user, single program, single task, serial processing - no OS

' / 50s: System monitors / batch processing
2. A resource manager! 2. A resource manager! s the monitor ordered the sequence of jobs and triggered their sequential execution

50s-60s: Advanced system monitors / batch processing:

q . 0 q w the monitor is handling interrupts and timers
.. coordinating access to hardware resources ... coordinating access to hardware resources w first support for memory protection

Operating systems deal with w firstimplementations of privileged instructions (accessible by the monitor only).

early 60s: Multiprogramming systems:
processors 1 employ the long device I/0 delays for switches to other, runable programs

memory early 60s: Multiprogramming, time-sharing systems:
mass storage & assign time-slices to each program and switch regularly

communication channels early 70s: Multitasking systems — multiple developments resulting in UNIX (besides others)

devices (timers, special purpose processors, peripheral hardware, ... early 80s: single user, single tasking systems, with emphasis on user interface or APls.
MS-DOS, CP/M, MacOS and others first employed ‘small scale’ CPUs (personal computers).

mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)

wr and tasks/processes/programs which are applying for access to these resources!
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The evolution of communication systems Types of current operating systems Types of current operating systems

* 1901: first wireless data transmission (Morse-code from ships to shore) Personal computing systems, workstations, and workgroup servers:
« 56: first transmission of data through phone-lines ) . Parallel operating systems
o /62: first transmission of data via satellites (Telstar)  late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

: . 3(H rting with almost none of the classical OS-fa res ani Vi ) 3
o '69: ARPA-net (predecessor of the current internet) 80s: PCs starting with almost none of the classical OS-features and services, « support for a large number of processors, either:

but with an user-interface (MacOS) and simple device drivers (MS-DOS)
* 80s: introduction of fast local networks (LANs): ethernet, token-ring * symmetrical: each CPU has a full copy of the operating system

« 90s: mass introduction of wireless networks (LAN and WAN) w last 20 years: evolving and expanding into current general purpose OSs, like for instace: or
Solaris (based on SVR4, BSD, and SunOS)
LINUX (open source UNIX re-implementation for x86 processors and others)
Current standard consumer computers might come with: current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
High speed network connectors (e.g. GB-Ethernet) MacOS X (Mach kernel with BSD Unix and a proprietary user-interface)
Wireless LAN (e.g. IEEE802.11g, ...)
Local device bus-system (e.g. Firewire 800, Fibre Channel or USB 3.0)
Wireless local device network (e.g. Bluetooth)
Infrared communication (e.g. IrDA) * None of these OSs are suitable for distributed or real-time systems.
Modem/ADSL

* asymmetrical: only one CPU carries the full operating system, the others are
operated by small operating system stubs to transfer code or tasks.

* Multiprocessing is supported by all these OSs to some extent.
¢ None of these OSs are suitable for embedded systems, although trials have been performed.
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Types of current operating systems Types of current operating systems Types of current operating systems

Distributed operating systems Real-time operating systems Real-time operating systems

 all CPUs carry a small kernel operating system for communication services. . .

Fast context switches? Fasteontextswitches? should be fast anyway

Small size? Smalt-size? should be small anyway

Quick response to external interrupts? tickrespon ternatinterrupts? not ‘quick’, but predictable
Multitasking? Muttitasking? often, not always

* guarantee availability (hot stand-by) ‘low level’ programming interfaces? ng-interfaces? needed in many operating systems

* ortoincrease throughput (heavy duty servers) Interprocess communication tools? SS ieath 52 needed in almost all operating systems

« all other OS-services are distributed over available CPUs
* services may migrate

services can be multiplied in order to

High processor utilization? i s itization? fault tolerance builds on redundancy!
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Architectures Architectures Architectures

Types of current operating systems Types of current operating systems What is an operating system?

Is there a standard set of features for operating systems?
Real-time operating systems need to provide... Embedded operating systems
w the logical correctness of the results as well as
. ) ¢ usually real-time systems, often hard real-time systems
= the correctness of the time, when the results are delivered )
 very small footprint (often a few KBs)
* none or limited user-interaction

. Predlctablllty! (not performancel) 1w 90-95% of all processors are working here

w All results are to be delivered just-in-time - not too early, not too late.

Timing constraints are specified in many different ways ...
... often as a response to ‘external’ events
& reactive systems
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Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.
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Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,
as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

= almost:

memory process and inter-process
will be considered essential in most systems

Is there always an explicit operating system?
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Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,
as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

= almost:

memory process and inter-process
will be considered essential in most systems

Is there always an explicit operating system?

= no:

some languages and development systems operate with standalone runtime environments
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Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

ww almost:

memory process and inter-process
will be considered essential in most systems
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Typical features of operating systems

Process management:

* Context switch
¢ Scheduling
* Book keeping (creation, states, cleanup)

= context switch:

= needs to...

* ‘remove’ one process from the CPU while preserving its state
¢ choose another process (scheduling)

* ‘insert’ the new process into the CPU, restoring the CPU state

Some CPUs have hardware support for context switching, otherwise:
w use interrupt mechanism

we R. Zimmer, The Ausiralian National University 8 (chapter 9: “Architectures” up o page 746

Architectures

Typical features of operating systems

Memory management:
Allocation / Deallocation
Virtual memory: logical vs. physical addresses, segments, paging, swapping, etc.
Memory protection (privilege levels, separate virtual memory segments, ...)
Shared memory

Synchronisation / Inter-process communication
* semaphores, mutexes, cond. variables, channels, mailboxes, MPI, etc. (chapter 4)
w tightly coupled to scheduling / task switching!

Hardware abstraction

* Device drivers
* API
* Protocols, file systems, networking, everything else...
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Architectures

Typical structures of operating systems

Monolithic

(or ‘the big mess...")

non-portable

hard to maintain

lacks reliability

all services are in the kernel (on the same privilege level)

& but: may reach high efficiency

Monolithic

e.g. most early UNIX systems,
MS-DOS (80s), Windows (all non-NT based versions)
MacOS (until version 9), and many others...

22020 Usve R. Zimmer, The Ausiralian National University
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Architectures

Typical structures of operating systems

Monolithic & Modular

Modules can be platform independent

Easier to maintain and to develop

Reliability is increased

all services are still in the kernel (on the same privilege level)

w= may reach high efficiency

Modular

e.g. current Linux versions

© 2020 Uwe R. Zimmer, The Australian Nati page 731 of 758 (chapter 9; “Architectures” up to page 746




- -
Architectures _‘ — Architectures _ Architectures

Typical structures of operating systems Typical structures of operating systems Typical structures of operating systems

Monolithic & layered pKernels & virtual machines pKernels & client-server models

pkernel implements essential process,

kernel implements essential process, "
K P P memory, and message handling

easily portable memory, and message handling

. . N . all ‘higher’ services are user level servers
significantly easier to maintain all‘higher services are dealt with outside the o g ‘ °
crashing layers do not necessarily stop the whole OS - A kernel = no threat for the kernel stability “ ﬂ significantly easier to maintain
possibly reduced efficiency through many interfaces mre— significantly easier to maintain — kernel ensures reliable message passing

. between clients and servers ient servi c
rigorous implementation of the stacked virtual machine 5 multiple OSs can be executed pkernel, client server structure
i highly modular and flexible
perspective on OSs at the same time ghly )
servers can be redundant and easily replaced

pkernel is highly hardware dependent
only the pkernel needs to be ported. possibly reduced efficiency through
. X N . possibly reduced efficiency through increased communications
e.g. some current UNIX implementations (e.g. Solaris) to a certain de- increased communications
gree, many research OSs (e.g. ‘THE system’, Dijkstra ‘68)

e.g. wide spread concept: as early as the CP/M, VM/370 ('79)
or as recent as MacOS X (mach kernel + BSD unix), ... e.g. current research projects, L4, etc.
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Typical structures of operating systems UNIX UNIX

pKernels & client-server models UNIX features Dynamic process creation

pkernel implements essential process, * Hierarchical file-system (maintained via‘mount’ and ‘unmount’) pid = fork ();
memory, and message handling  Universal file-interface applied to files, devices (1/0), as well as IPC
all*higher’ services are user level servers * Dynamic process creation via duplication

significantly easier to maintain

resulting a duplication of the current process

¢ returning 0 to the newly created process

¢ Choice of shells . . . .

Kernel en liable mes ssin * returning the process id of the child process to the creating process (the ‘parent’ process)
ernel ensures reliable message passing e Internal structure as well as all APIs are based on ‘C’ or -1 for a failure

between clients and servers:

locally and through a network Network ¢ Relatively high degree of portability

highly modular and flexible pkernel, distributed systems & UNICS, UNIX, BSD, XENIX, System V, QNX, IRIX, SunOS, Ultrix, Sinix, Mach,
servers can be redundant and easily replaced Plan 9, NeXTSTEP, AIX, HP-UX, Solaris, NetBSD, FreeBSD, Linux, OPEN-

possibly reduced efficiency through increased communications STEP, OpenBSD, Darwin, QNX/Neutrino, OS X, QNX RTOS, ..

e.g. Java engines,
distributed real-time operating systems, current distributed OSs research projects

©2020 Uwe R. Zimmer, The Ausiralian National University 55 (chapter 9 “Architectures” up to page 746 ©2020 Uwe . Zimmer, The Austalian National U page 736 of 758 (chapier 9: “Architectures” up 1o page 746) 2020 Uwe R. Zirrer, The Ausivalian National University age 7 pier 9: “Architectures” up to page 746

Architectures Architectures 2 Architectures

UNIX UNIX UNIX

Dynamic process creation Synchronization in UNIX == Signals Message passing in UNIX = Pipes
int data_pipe [2], c, rc;
if (pipe (data_pipe) == -1) { 2 CEDNS A T
#include <unistd.h> id = fork (; perror (“no pipe"y; exit (1); close (data_pipe [01);
#include <sys/types.h> if (id == 0) { ) ! while ((c = getchar ()) > @) {
* returning 0 to the newly created process #include <signal.h> if (writ
* returning the process id of the child process to the creating process (the ‘parent’ process) pid_t id; (data_pipe[1], &, 1) == -1) {
or -1 for a failure perror (“pipe broken“);
lose (data_pipe [11);
exit (1);

pid = fork (O;
resulting a duplication of the current process

signal (SIGSTOP, catch_stop); if (fork () == @) { // child
bause (); close (data_pipe [11);
exit (0): while ((rc = read
(data_pipe [@], &c, 1)) >0) {
putchar (c);
} b
b

void catch_stop (int sig_num)
Frequent usage: ¢
if (fork () == 0) { . X } else {
// ... the child’s task ... often implemented as: /% do something with the signal =/ Kill (id, SIGSTOP);
(“absolute path to executable file“, “args“); id = wait O;
exit (0); /* terminate child process */ L SLBG if (rc == -1) {
} else { perror (“pipe broken); "
//... the parent’s task ... close (data_pipe [@1); exit (1);} pid = wait ();
pid = wait (); /* wait for the termination of one child process */ Close (data_pipe [01): exit (0):

(data_pipe [11);

b

02020 Unve R. Zimmer, The Australian National Universty page 7 (chaper 9 “Architeciures” up to page 746) 22020 Unve K. Zimmer, Th T page 739 of 758 (chapter 9: “Architectures” up 10 page 746) © 2020 Uwe R. Zimmer, The Ausiralian National University page 740 of 758 (chapter 9; “Architectures” up to page 746




Architectures — Architectures Architectures
UNIX UNIX POSIX

s & IPC in UNIX Sockets in BSD UNIX Portable Operating System Interface for Unix

Processe: Sockets try to keep the paradigm of a universal file interface for everything and introduce:
* Process creation results in a duplication of address space (‘copy-on-write’ becomes necessary)

inefficient, but can generate new tasks out of any user process — no shared memory! Connectionless interfaces (e.g. UDP/IP): IEEE/ANSI Std 1003.1 and following.

Library Interface (API)
[C Language calling conventions — types exit mostly in terms of
(open) lists of pointers and integers with overloaded meanings].

Signals: * Server side: - -
* limited information content, no buffering, no timing assurances (signals are not interrupts!) ¢ Client side:
very basic, yet not very powerful form of synchronisation
Connection oriented interfaces (e.g. TCP/IP): More than 30 different POSIX standards (and growing / changing).

o Server side: - - 5 a system is ‘POSIX compliant, if it implements parts of one of them!

is identical to file o

s or network communications . o e R .
€s 0 cations > a system is “100% POSIX compliant, if it implements one of them!
e Client side:
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POSIX - some of the relevant standards... POSIX - 1003.1b/c

Summary

Architectures

imesenal — " U0 Briorized o e Threads: a common interface to threading - differences to ‘classical UNIX processes’

real-time signals, priority scheduling, timers, asynchronous 1/O, prioritiz , syn- . .

ERj:LS,::S EIRE 10 e A e i ey s, A PGl ¢ Hardware architectures - from simple logic to supercomputers
AES TR EEHI EEE I oo  logic, CPU architecture, pipelines, out-of-order execution, multithreading, ...

e Priority scheduling: fixed priority, 32 priority levels
. . Ll - i
¢ Real-time signals: signals with multiple levels of priority Data-Parallelism

* Vectorization, Reduction, General data-parallelism

o Timers: delivery is accomplished using POSIX signals

iti . new process create semantics (spawn), sporadic server scheduling, execution time . .

10031 ?dmde'téo{':rl‘ﬁzzls monitoring of processes and threads, /0 advisory information, timeouts on block- * Semaphore: named semaphore
! xtensi ing functions, device control, and interrupt control e Concurrency in languages

* Memory queues: message passing using named queues Y guag N

1001j  Advanced Real-  typed memory, nanosleep improvements, barrier synchronization, readeriwriter _ ) Some examples: Haskell, Occam, Chapel

1100 time Extensions locks, spin locks, and persistent notification for message queues ¢ Shared memory: memory regions shared between multiple processes

. ) S * Operating systems

p— Distributed  buffer management, send control blocks, asynchronous and synchronous oper- L4 Memory locking: no virtual memory swapping of physical memory pages P; 8 SY! e

e ations, bounded blocking, message priorities, message labels, and implementation * Structures: monolithic, modular, layered, pkernels

Real-time protocols
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Summary
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Summary

Summary

Communication & Synchronization

* Shared memory based synchronization
Flags, condition variables, semaphores,
conditional critical regions, monitors, protected objects.
Guard evaluation times, nested monitor calls, deadlocks,
simultaneous reading, queue management.
Synchronization and object orientation, blocking operations and re-queuing.

* Message based synchronization

Synchronization models
Addressing modes
Message structures
Examples
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Summary

Summary

Concurrency — The Basic Concepts
* Forms of concurrency
¢ Models and terminology

 Abstractions and perspectives: computer science, physics & engineering
* Observations: non-determinism, atomicity, interaction, interleaving
* Correctness in concurrent syslems

* Processes and threads

¢ Basic concepts and notions
¢ Process states
¢ Concurrent programming languages:

 Explicit concurrency: e.g. Ada, Chapel
¢ Implicit concurrency: functional programming - e.g. Haskell, Caml
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Summary

Summary

Non-Determinism

¢ Non-determimism by design:
¢ Benefits & considerations

¢ Non-determinism by interaction:
¢ Selective synchronization
¢ Selective accepts
¢ Selective calls

* Correctness of non-deterministic programs:
 Sources of non-determinism
¢ Predicates & invariants
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Summary

Summary

Mutual Exclusion

¢ Definition of mutual exclusion

¢ Atomic load and atomic store operations
¢ ...some classical errors
¢ Decker’s algorithm, Peterson’s algorithm
* Bakery algorithm

 Realistic hardware support

¢ Atomic test-and-set, Atomic exchanges, Memory cell reservations

¢ Semaphores
* Basic semaphore definition
* Operating systems style semaphores

we R, Zimmer, The Ausiralian National University

Summary

Summary

Data Parallelism

¢ Data-Parallelism
* Vectorization
* Reduction
* General data-parallelism

¢ Examples
* Image processing
¢ Cellular automata
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Summary

Scheduling

 Basic performance scheduling

* Motivation & Terms
¢ Levels of knowledge / assumptions about the task set
* Evaluation of performance and selection of appropriate methods

Summary

Summary

Safety & Liveness

Liveness
* Fairness

Safety

¢ Deadlock detection
¢ Deadlock avoidance
¢ Deadlock prevention

Summary

Summary

Distributed Systems

¢ Networks
* Osl, topologies
* Practical network standards

* Time

* Synchronized clocks, virtual (logical) times

« Distributed critical regions (synchronized, logical, token ring)
¢ Towards predictable scheduling

Atomic & Idempotent operations
e Definitions & implications

* Motivation & Terms
* Categories & Examples

¢ Distributed systems
* Elections

2020 Une R. 1 The Australlan Nationa

Failure modes
* Definitions, fault sources and basic fault tolerance

8 (chapter 10:

* Distributed states, consistent snapshots
* Distributed servers (replicates, distributed processing, distributed commits)
* Transactions (ACID properties, serializable interleavings, transaction schedulers)
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Summary

Architectures

¢ Hardware architectures - from simple logic to supercomputers
* logic, CPU architecture, pipelines, of-orde cution, multithreading,

¢ Data-Parallelism

* Vectorization, Reduction, General data-parallelism

¢ Concurrency in languages
* Some examples: Haskell, Occam, Chapel

¢ Operating systems

* Structures: monolithic, modular, layered, pkernels
* UNIX, PO!

Summary

Exam preparations

Helpful

Distinguish central aspects from excursions, examples & implementations.

Gain full understanding of all central aspec

Be able to categorize any given example under a general theme discussed in the lec
Explain to and discuss the topics with other (preferably better) students.

Try whether you can connect aspects from different parts of the lecture.

Not helpful

Remembering the slides word by word.

Learn the Chapel / Unix / Posix / Occam / sockets reference manual page by page.
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